4,210 research outputs found
Random tensor models in the large N limit: Uncoloring the colored tensor models
Tensor models generalize random matrix models in yielding a theory of
dynamical triangulations in arbitrary dimensions. Colored tensor models have
been shown to admit a 1/N expansion and a continuum limit accessible
analytically. In this paper we prove that these results extend to the most
general tensor model for a single generic, i.e. non-symmetric, complex tensor.
Colors appear in this setting as a canonical book-keeping device and not as a
fundamental feature. In the large N limit, we exhibit a set of Virasoro
constraints satisfied by the free energy and an infinite family of
multicritical behaviors with entropy exponents \gamma_m=1-1/m.Comment: 15 page
Proton deflectometry analysis in magnetized plasmas: magnetic field reconstruction in one dimension
Proton deflectometry is increasingly used in magnetized high-energy-density
plasmas to observe electromagnetic fields. We describe a reconstruction
algorithm to recover the electromagnetic fields from proton fluence data in
1-D. The algorithm is verified against analytic solutions and applied to
example data. The virtue of a 1-D algorithm is that it is fast and can be
incorporated into higher-level analysis routines and workflows, for example to
scan parameters and conduct uncertainty analysis. Furthermore, working through
the 1-D algorithm exposes the fundamental importance of boundary conditions and
the initial proton fluence profile for an accurate reconstruction. From these
considerations we propose a hybrid mesh-fluence reconstruction technique where
fields are reconstructed from fluence data in an interior region with boundary
conditions supplied by direct mesh measurements at the boundary.Comment: 10 pages, 6 figures. For code library, see:
https://github.com/wrfox/PRADICAMEN
Regulation of human immunodeficiency virus type 1 gene transcription by nuclear receptors in human brain cells.
Infection of cells of the central nervous system by the human immunodeficiency virus type-1 (HIV-1) leads to HIV-1-associated neuropathology. Recent studies have demonstrated the importance of long terminal repeat (LTR) binding sites in determining the pathogenicity of HIV. Here we have investigated the presence and the functional role of transcription factors that have the potential to interact, directly or indirectly, with the nuclear receptor-responsive element in the LTR of HIV-1, in different human cell lines of the brain. Cotransfection experiments showed that in oligodendroglioma TC-620 cells, the retinoic acid receptor and the retinoid X receptor activate LTR-driven transcription in the absence of ligand. Addition of all-trans- or 9-cis-retinoic acid reverses this effect. In contrast, in astrocytoma, neuronal, and microglial cells, no significant effect of the retinoid acid pathway was detected. This retinoid response is mediated by distinct molecular interactions in the lymphotropic LAI and the neurotropic JR-CSF HIV-1 strains. Moreover, retinoid receptors were found to antagonize the chicken ovalbumin upstream promoter transcription factor- as well as the c-JUN-mediated LTR transactivation. Our findings demonstrate the importance of the retinoic acid signaling pathway and of cross-coupling interactions in the repression of HIV-1 LTR gene expression.journal articleresearch support, non-u.s. gov't1996 Sep 13importe
Waves attractors in rotating fluids: a paradigm for ill-posed Cauchy problems
In the limit of low viscosity, we show that the amplitude of the modes of
oscillation of a rotating fluid, namely inertial modes, concentrate along an
attractor formed by a periodic orbit of characteristics of the underlying
hyperbolic Poincar\'e equation. The dynamics of characteristics is used to
elaborate a scenario for the asymptotic behaviour of the eigenmodes and
eigenspectrum in the physically relevant r\'egime of very low viscosities which
are out of reach numerically. This problem offers a canonical ill-posed Cauchy
problem which has applications in other fields.Comment: 4 pages, 5 fi
Planar Laser Induced Fluorescence Mapping of a Carbon Laser Produced Plasma
We present measurements of ion velocity distribution profiles obtained by
laser induced fluorescence (LIF) on an explosive laser produced plasma (LPP).
The spatio-temporal evolution of the resulting carbon ion velocity distribution
was mapped by scanning through the Doppler-shifted absorption wavelengths using
a tunable, diode-pumped laser. The acquisition of this data was facilitated by
the high repetition rate capability of the ablation laser (1 Hz) which allowed
the accumulation of thousand of laser shots in short experimental times. By
varying the intensity of the LIF beam, we were able to explore the effects of
fluorescence power against laser irradiance in the context of evaluating the
saturation versus the non-saturation regime. The small beam size of the LIF
beam led to high spatial resolution of the measurement compared to other ion
velocity distribution measurement techniques, while the fast-gated operation
mode of the camera detector enabled the measurement of the relevant electron
transitions
Random tree growth by vertex splitting
We study a model of growing planar tree graphs where in each time step we
separate the tree into two components by splitting a vertex and then connect
the two pieces by inserting a new link between the daughter vertices. This
model generalises the preferential attachment model and Ford's -model
for phylogenetic trees. We develop a mean field theory for the vertex degree
distribution, prove that the mean field theory is exact in some special cases
and check that it agrees with numerical simulations in general. We calculate
various correlation functions and show that the intrinsic Hausdorff dimension
can vary from one to infinity, depending on the parameters of the model.Comment: 47 page
- …