488 research outputs found
Implementation of a Matrix Crack Spacing Parameter in a Continuum Damage Mechanics Finite Element Model
Continuum Damage Mechanics (CDM) based progressive damage and failure analysis (PDFA) methods have demonstrated success in a variety of finite element analysis (FEA) implementations. However, the technical maturity of CDM codes has not yet been proven for the full design space of composite materials in aerospace applications. CDM-based approaches represent the presence of damage by changing the local material stiffness definitions and without updating the original mesh or element integration schemes. Without discretely representing cracks and their paths through the mesh, damage in models with CDM-based materials is often distributed in a region of partially damaged elements ahead of stress concentrations. Having a series of discrete matrix cracks represented by a softened region may affect predictions of damage propagation and, thus, structural failure. This issue can be mitigated by restricting matrix damage development to discrete, fiber-aligned rows of elements; hence CDM-based matrix cracks can be implemented to be more representative of discrete matrix cracks. This paper evaluates the effect of restricting CDM matrix crack development to discrete, fiber-aligned rows where the spacing of these rows is controlled by a user-defined crack spacing parameter. Initially, the effect of incrementally increasing matrix crack spacing in a unidirectional center notch coupon is evaluated. Then, the lessons learned from the center notch specimen are applied to open-hole compression finite element models. Results are compared to test data, and the limitations, successes, and potential of the matrix crack spacing approach are discussed
Wound Botulism in Injection Drug Users: Time to Antitoxin Correlates with Intensive Care Unit Length of Stay
Objectives: We sought to identify factors associated with need for mechanical ventilation (MV), length of intensive care unit (ICU) stay, length of hospital stay, and poor outcome in injection drug users (IDUs) with wound botulism (WB).Methods: This is a retrospective review of WB patients admitted between 1991-2005. IDUs were included if they had symptoms of WB and diagnostic confirmation. Primary outcome variables were the need for MV, length of ICU stay, length of hospital stay, hospital-related complications, and death.Results: Twenty-nine patients met inclusion criteria. Twenty-two (76%) admitted to heroin use only and seven (24%) admitted to heroin and methamphetamine use. Chief complaints on initial presentation included visual changes, 13 (45%); weakness, nine (31%); and difficulty swallowing, seven (24%). Skin wounds were documented in 22 (76%). Twenty-one (72%) patients underwent mechanical ventilation (MV). Antitoxin (AT) was administered to 26 (90%) patients but only two received antitoxin in the emergency department (ED). The time from ED presentation to AT administration was associated with increased length of ICU stay (Regression coefficient = 2.5; 95% CI 0.45, 4.5). The time from ED presentation to wound drainage was also associated with increased length of ICU stay (Regression coefficient = 13.7; 95% CI = 2.3, 25.2). There was no relationship between time to antibiotic administration and length of ICU stay.Conclusion: MV and prolonged ICU stays are common in patients identified with WB. Early AT administration and wound drainage are recommended as these measures may decrease ICU length of stay.[West J Emerg Med. 2009;10(4):251-256.
incidence Rate of Psychiatric Disorders in 2020: the Pivotal Role Played By Sars-Cov-2 infection
IMPORTANCE: The Coronavirus Disease (COVID-19) pandemic has significantly impacted mental health outcomes. While the frequency of anxiety and depressive symptoms has increased in the whole population, the relationship between COVID-19 and new psychiatric diagnoses remains unclear.
OBJECTIVE: to compare the population incidence rate of emergence of de novo psychiatric disorders in 2020 compared to the previous years, and to compare the incidence rate of new psychiatric disorder diagnoses between people with vs without COVID-19.
DESIGN, SETTING, AND PARTICIPANTS: This study utilized administrative claims data from the Clinformatics® Data Mart database, licensed from Optum®. The study is a cross-sectional analysis that compared the incidence rate of new psychiatric disorders in 2020 vs. 2018 and 2019 in the entire insured population database. Subsequently, the incidence of new psychiatric disorders in people with vs. without COVID-19 during 2020 was analyzed.
EXPOSURE: The exposures included diagnosis and severity of COVID-19 infection.
MAIN OUTCOMES MEASURES: The dependent variables of interest were the incidence rates of new psychiatric disorders, specifically schizophrenia spectrum disorders, mood disorders, anxiety disorders, and obsessive-compulsive disorder.
RESULTS: The population studied included 10,463,672 US adults (mean age 52.83, 52% female) who were unique people for the year of 2020. Incidence of newly diagnosed psychiatric disorders per 1,000 individuals in the 2020 whole population were 28.81 (CI: 28.71, 28.92) for anxiety disorders, 1.04 (CI: 1.02, 1.06) for schizophrenia disorders, 0.42 (CI: 0.41, 0.43) for OCD and 28.85 (CI: 28.75, 28.95) for mood disorders. These rates were not significantly higher than 2018 or 2019. When comparing incidence rates between COVID-19 vs. non-COVID-19 populations in 2020, the rates were significantly higher in the COVID-19 population: 46.89 (CI: 46.24, 47.53) for anxiety, 49.31 (CI: 48.66, 49.97) for mood disorders, 0.57 (CI: 0.50, 0.65) for OCD, and 3.52 (CI: 3.34, 3.70) for schizophrenia. COVID-19 severity was significantly associated with new diagnoses of schizophrenia, anxiety and mood disorders in multivariate analyses.
CONCLUSIONS: Compared to 2018 and 2019, in 2020 there was no increased incidence of new psychiatric disorders in the general population based on insurance claims data. Importantly, people with COVID-19 were more likely to be diagnosed with a new psychiatric disorder, most notably disorders with psychosis, indicating a potential association between COVID-19 and mental/brain health
Constraints on the Progenitor System of the Type Ia Supernova SN 2011fe/PTF11kly
Type Ia supernovae (SNe) serve as a fundamental pillar of modern cosmology,
owing to their large luminosity and a well-defined relationship between
light-curve shape and peak brightness. The precision distance measurements
enabled by SNe Ia first revealed the accelerating expansion of the universe,
now widely believed (though hardly understood) to require the presence of a
mysterious "dark" energy. General consensus holds that Type Ia SNe result from
thermonuclear explosions of a white dwarf (WD) in a binary system; however,
little is known of the precise nature of the companion star and the physical
properties of the progenitor system. Here we make use of extensive historical
imaging obtained at the location of SN 2011fe/PTF11kly, the closest SN Ia
discovered in the digital imaging era, to constrain the visible-light
luminosity of the progenitor to be 10-100 times fainter than previous limits on
other SN Ia progenitors. This directly rules out luminous red giants and the
vast majority of helium stars as the mass-donating companion to the exploding
white dwarf. Any evolved red companion must have been born with mass less than
3.5 times the mass of the Sun. These observations favour a scenario where the
exploding WD of SN 2011fe/PTF11kly, accreted matter either from another WD, or
by Roche-lobe overflow from a subgiant or main-sequence companion star.Comment: 22 pages, 6 figures, submitte
An interpretative phenomenological analysis of posttraumatic growth in adults bereaved by suicide
This study explored experiences of posttraumatic growth in adults bereaved by suicide. Six participants were interviewed using a semi-structured interview schedule. Transcribed interviews were analyzed from an interpretative phenomenological framework. Two superordinate themes, with three ordinate themes in each, were identified: (a) positive growth (“life view,” “knowledge of self,” and “relation to others”) and (b) social context (“gaze of others,” “public guise,” and “solace of other survivors”). Suicide survivors gain extra insights due to their experiences, but are reluctant to acknowledge that they do. This requires consideration in theoretical and clinical setting
Restoration of disk height through non-surgical spinal decompression is associated with decreased discogenic low back pain: a retrospective cohort study
<p>Abstract</p> <p>Background</p> <p>Because previous studies have suggested that motorized non-surgical spinal decompression can reduce chronic low back pain (LBP) due to disc degeneration (discogenic low back pain) and disc herniation, it has accordingly been hypothesized that the reduction of pressure on affected discs will facilitate their regeneration. The goal of this study was to determine if changes in LBP, as measured on a verbal rating scale, before and after a 6-week treatment period with non-surgical spinal decompression, correlate with changes in lumbar disc height, as measured on computed tomography (CT) scans.</p> <p>Methods</p> <p>A retrospective cohort study of adults with chronic LBP attributed to disc herniation and/or discogenic LBP who underwent a 6-week treatment protocol of motorized non-surgical spinal decompression via the DRX9000 with CT scans before and after treatment. The main outcomes were changes in pain as measured on a verbal rating scale from 0 to 10 during a flexion-extension range of motion evaluation and changes in disc height as measured on CT scans. Paired t-test or linear regression was used as appropriate with p < 0.05 considered to be statistically significant.</p> <p>Results</p> <p>We identified 30 patients with lumbar disc herniation with an average age of 65 years, body mass index of 29 kg/m<sup>2</sup>, 21 females and 9 males, and an average duration of LBP of 12.5 weeks. During treatment, low back pain decreased from 6.2 (SD 2.2) to 1.6 (2.3, p < 0.001) and disc height increased from 7.5 (1.7) mm to 8.8 (1.7) mm (p < 0.001). Increase in disc height and reduction in pain were significantly correlated (r = 0.36, p = 0.044).</p> <p>Conclusions</p> <p>Non-surgical spinal decompression was associated with a reduction in pain and an increase in disc height. The correlation of these variables suggests that pain reduction may be mediated, at least in part, through a restoration of disc height. A randomized controlled trial is needed to confirm these promising results.</p> <p>Clinical trial registration number</p> <p>NCT00828880</p
A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics
BACKGROUND: Dynamic modeling of metabolic reaction networks under in vivo conditions is a crucial step in order to obtain a better understanding of the (dis)functioning of living cells. So far dynamic metabolic models generally have been based on mechanistic rate equations which often contain so many parameters that their identifiability from experimental data forms a serious problem. Recently, approximative rate equations, based on the linear logarithmic (linlog) format have been proposed as a suitable alternative with fewer parameters. RESULTS: In this paper we present a method for estimation of the kinetic model parameters, which are equal to the elasticities defined in Metabolic Control Analysis, from metabolite data obtained from dynamic as well as steady state perturbations, using the linlog kinetic format. Additionally, we address the question of parameter identifiability from dynamic perturbation data in the presence of noise. The method is illustrated using metabolite data generated with a dynamic model of the glycolytic pathway of Saccharomyces cerevisiae based on mechanistic rate equations. Elasticities are estimated from the generated data, which define the complete linlog kinetic model of the glycolysis. The effect of data noise on the accuracy of the estimated elasticities is presented. Finally, identifiable subset of parameters is determined using information on the standard deviations of the estimated elasticities through Monte Carlo (MC) simulations. CONCLUSION: The parameter estimation within the linlog kinetic framework as presented here allows the determination of the elasticities directly from experimental data from typical dynamic and/or steady state experiments. These elasticities allow the reconstruction of the full kinetic model of Saccharomyces cerevisiae, and the determination of the control coefficients. MC simulations revealed that certain elasticities are potentially unidentifiable from dynamic data only. Addition of steady state perturbation of enzyme activities solved this problem
Exoplanet Science Priorities from the Perspective of Internal and Surface Processes for Silicate and Ice Dominated Worlds
The geophysics of extrasolar planets is a scientific topic often regarded as
standing largely beyond the reach of near-term observations. This reality in no
way diminishes the central role of geophysical phenomena in shaping planetary
outcomes, from formation, to thermal and chemical evolution, to numerous issues
of surface and near-surface habitability. We emphasize that for a balanced
understanding of extrasolar planets, it is important to look beyond the natural
biases of current observing tools, and actively seek unique pathways to
understand exoplanet interiors as best as possible during the long interim
prior to a time when internal components are more directly accessible. Such
pathways include but are not limited to: (a) enhanced theoretical and numerical
modeling, (b) laboratory research on critical material properties, (c)
measurement of geophysical properties by indirect inference from imprints left
on atmospheric and orbital properties, and (d) the purpose-driven use of Solar
System object exploration expressly for its value in comparative planetology
toward exoplanet-analogs. Breaking down barriers that envision local Solar
System exploration, including the study of Earth's own deep interior, as
separate from and in financial competition with extrasolar planet research, may
greatly improve the rate of needed scientific progress for exoplanet
geophysics. As the number of known rocky and icy exoplanets grows in the years
ahead, we expect demand for expertise in 'exogeoscience' will expand at a
commensurately intense pace. We highlight key topics, including: how water
oceans below ice shells may dominate the total habitability of our galaxy by
volume, how free-floating nomad planets may often attain habitable subsurface
oceans supported by radionuclide decay, and how deep interiors may critically
interact with atmospheric mass loss via dynamo-driven magnetic fields
Toward an internally consistent astronomical distance scale
Accurate astronomical distance determination is crucial for all fields in
astrophysics, from Galactic to cosmological scales. Despite, or perhaps because
of, significant efforts to determine accurate distances, using a wide range of
methods, tracers, and techniques, an internally consistent astronomical
distance framework has not yet been established. We review current efforts to
homogenize the Local Group's distance framework, with particular emphasis on
the potential of RR Lyrae stars as distance indicators, and attempt to extend
this in an internally consistent manner to cosmological distances. Calibration
based on Type Ia supernovae and distance determinations based on gravitational
lensing represent particularly promising approaches. We provide a positive
outlook to improvements to the status quo expected from future surveys,
missions, and facilities. Astronomical distance determination has clearly
reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press
(chapter 8 of a special collection resulting from the May 2016 ISSI-BJ
workshop on Astronomical Distance Determination in the Space Age
- …