168 research outputs found
Separated Fringe Packet Observations with the CHARA Array III. The Very High Eccentricity Binary HR 7345
After an eleven year observing campaign, we present the combined
visual{spectroscopic orbit of the formerly unremarkable bright star HR 7345 (HD
181655, HIP 94981, GJ 754.2). Using the Separated Fringe Packet (SFP) method
with the CHARA Array, we were able to determine a difficult to complete orbital
period of 331.609 +/- 0.004 days. The 11 month period causes the system to be
hidden from interferometric view behind the Sun for 3 years at a time. Due to
the high eccentricity orbit of about 90% of a year, after 2018 January the
periastron phase will not be observable again until late 2021. Hindered by its
extremely high eccentricity of 0.9322 +/- 0.0001, the double-lined
spectroscopic phase of HR 7345 is observable for 15 days. Such a high
eccentricity for HR 7345 places it among the most eccentric systems in catalogs
of both visual and spectroscopic orbits. For this system we determine nearly
identical component masses of 0.941 +/- 0.076 Msun and 0.926 +/- 0.075 Msun as
well as an orbital parallax of 41.08 +/- 0.77 mas.Comment: 20 pages, 3 figures, 4 table
Phase Closure Nulling: results from the 2009 campaign
We present here a new observational technique, Phase Closure Nulling (PCN),
which has the potential to obtain very high contrast detection and spectroscopy
of faint companions to bright stars. PCN consists in measuring closure phases
of fully resolved objects with a baseline triplet where one of the baselines
crosses a null of the object visibility function. For scenes dominated by the
presence of a stellar disk, the correlated flux of the star around nulls is
essentially canceled out, and in these regions the signature of fainter,
unresolved, scene object(s) dominates the imaginary part of the visibility in
particular the closure phase. We present here the basics of the PCN method, the
initial proof-of-concept observation, the envisioned science cases and report
about the first observing campaign made on VLTI/AMBER and CHARA/MIRC using this
technique.Comment: To be published in the proceedings of the SPIE'2010 conference on
"Optical and Infrared Interferometry II
- …