167 research outputs found

    Separated Fringe Packet Observations with the CHARA Array III. The Very High Eccentricity Binary HR 7345

    Get PDF
    After an eleven year observing campaign, we present the combined visual{spectroscopic orbit of the formerly unremarkable bright star HR 7345 (HD 181655, HIP 94981, GJ 754.2). Using the Separated Fringe Packet (SFP) method with the CHARA Array, we were able to determine a difficult to complete orbital period of 331.609 +/- 0.004 days. The 11 month period causes the system to be hidden from interferometric view behind the Sun for 3 years at a time. Due to the high eccentricity orbit of about 90% of a year, after 2018 January the periastron phase will not be observable again until late 2021. Hindered by its extremely high eccentricity of 0.9322 +/- 0.0001, the double-lined spectroscopic phase of HR 7345 is observable for 15 days. Such a high eccentricity for HR 7345 places it among the most eccentric systems in catalogs of both visual and spectroscopic orbits. For this system we determine nearly identical component masses of 0.941 +/- 0.076 Msun and 0.926 +/- 0.075 Msun as well as an orbital parallax of 41.08 +/- 0.77 mas.Comment: 20 pages, 3 figures, 4 table

    Phase Closure Nulling: results from the 2009 campaign

    Get PDF
    We present here a new observational technique, Phase Closure Nulling (PCN), which has the potential to obtain very high contrast detection and spectroscopy of faint companions to bright stars. PCN consists in measuring closure phases of fully resolved objects with a baseline triplet where one of the baselines crosses a null of the object visibility function. For scenes dominated by the presence of a stellar disk, the correlated flux of the star around nulls is essentially canceled out, and in these regions the signature of fainter, unresolved, scene object(s) dominates the imaginary part of the visibility in particular the closure phase. We present here the basics of the PCN method, the initial proof-of-concept observation, the envisioned science cases and report about the first observing campaign made on VLTI/AMBER and CHARA/MIRC using this technique.Comment: To be published in the proceedings of the SPIE'2010 conference on "Optical and Infrared Interferometry II
    • …
    corecore