506 research outputs found

    Hypersensitivity to perturbations of quantum-chaotic wave-packet dynamics

    Full text link
    We re-examine the problem of the "Loschmidt echo", which measures the sensitivity to perturbation of quantum chaotic dynamics. The overlap squared M(t)M(t) of two wave packets evolving under slightly different Hamiltonians is shown to have the double-exponential initial decay exp(constant×e2λ0t)\propto \exp(-{\rm constant}\times e^{2\lambda_0 t}) in the main part of phase space. The coefficient λ0\lambda_0 is the self-averaging Lyapunov exponent. The average decay Mˉeλ1t\bar{M}\propto e^{-\lambda_1 t} is single exponential with a different coefficient λ1\lambda_1. The volume of phase space that contributes to Mˉ\bar{M} vanishes in the classical limit 0\hbar\to 0 for times less than the Ehrenfest time τE=12λ01ln\tau_E=\frac{1}{2}\lambda_0^{-1}|\ln \hbar|. It is only after the Ehrenfest time that the average decay is representative for a typical initial condition.Comment: 4 pages, 4 figures, [2017: fixed broken postscript figures

    Classical predictability and coarse-grained evolution of the quantum baker's map

    Full text link
    We investigate how classical predictability of the coarse-grained evolution of the quantum baker's map depends on the character of the coarse-graining. Our analysis extends earlier work by Brun and Hartle [Phys. Rev. D 60, 123503 (1999)] to the case of a chaotic map. To quantify predictability, we compare the rate of entropy increase for a family of coarse-grainings in the decoherent histories formalism. We find that the rate of entropy increase is dominated by the number of scales characterising the coarse-graining.Comment: 28 pages, 1 figur

    Quantum Probability from Decision Theory?

    Get PDF
    In a recent paper (quant-ph/9906015), Deutsch claims to derive the "probabilistic predictions of quantum theory" from the "non-probabilistic axioms of quantum theory" and the "non-probabilistic part of classical decision theory." We show that his derivation fails because it includes hidden probabilistic assumptions.Comment: LaTeX, 8 pages, no figure

    Quantum probabilities as Bayesian probabilities

    Full text link
    In the Bayesian approach to probability theory, probability quantifies a degree of belief for a single trial, without any a priori connection to limiting frequencies. In this paper we show that, despite being prescribed by a fundamental law, probabilities for individual quantum systems can be understood within the Bayesian approach. We argue that the distinction between classical and quantum probabilities lies not in their definition, but in the nature of the information they encode. In the classical world, maximal information about a physical system is complete in the sense of providing definite answers for all possible questions that can be asked of the system. In the quantum world, maximal information is not complete and cannot be completed. Using this distinction, we show that any Bayesian probability assignment in quantum mechanics must have the form of the quantum probability rule, that maximal information about a quantum system leads to a unique quantum-state assignment, and that quantum theory provides a stronger connection between probability and measured frequency than can be justified classically. Finally we give a Bayesian formulation of quantum-state tomography.Comment: 6 pages, Latex, final versio

    Semiclassical properties and chaos degree for the quantum baker's map

    Get PDF
    We study the chaotic behaviour and the quantum-classical correspondence for the baker's map. Correspondence between quantum and classical expectation values is investigated and it is numerically shown that it is lost at the logarithmic timescale. The quantum chaos degree is computed and it is demonstrated that it describes the chaotic features of the model. The correspondence between classical and quantum chaos degrees is considered.Comment: 30 pages, 4 figures, accepted for publication in J. Math. Phy

    Preparation information and optimal decompositions for mixed quantum states

    Get PDF
    Consider a joint quantum state of a system and its environment. A measurement on the environment induces a decomposition of the system state. Using algorithmic information theory, we define the preparation information of a pure or mixed state in a given decomposition. We then define an optimal decomposition as a decomposition for which the average preparation information is minimal. The average preparation information for an optimal decomposition characterizes the system-environment correlations. We discuss properties and applications of the concepts introduced above and give several examples.Comment: 13 pages, latex, 2 postscript figure

    Classical limit in terms of symbolic dynamics for the quantum baker's map

    Full text link
    We derive a simple closed form for the matrix elements of the quantum baker's map that shows that the map is an approximate shift in a symbolic representation based on discrete phase space. We use this result to give a formal proof that the quantum baker's map approaches a classical Bernoulli shift in the limit of a small effective Plank's constant.Comment: 12 pages, LaTex, typos correcte

    C++QED: An object-oriented framework for wave-function simulations of cavity QED systems

    Get PDF
    We present a framework for efficiently performing Monte Carlo wave-function simulations in cavity QED with moving particles. It relies heavily on the object-oriented programming paradigm as realised in C++, and is extensible and applicable for simulating open interacting quantum dynamics in general. The user is provided with a number of ``elements'', eg pumped moving particles, pumped lossy cavity modes, and various interactions to compose complex interacting systems, which contain several particles moving in electromagnetic fields of various configurations, and perform wave-function simulations on such systems. A number of tools are provided to facilitate the implementation of new elements.Comment: 31 pages, 8 figures, 3 table

    Chaos for Liouville probability densities

    Full text link
    Using the method of symbolic dynamics, we show that a large class of classical chaotic maps exhibit exponential hypersensitivity to perturbation, i.e., a rapid increase with time of the information needed to describe the perturbed time evolution of the Liouville density, the information attaining values that are exponentially larger than the entropy increase that results from averaging over the perturbation. The exponential rate of growth of the ratio of information to entropy is given by the Kolmogorov-Sinai entropy of the map. These findings generalize and extend results obtained for the baker's map [R. Schack and C. M. Caves, Phys. Rev. Lett. 69, 3413 (1992)].Comment: 26 pages in REVTEX, no figures, submitted to Phys. Rev.

    Complex joint probabilities as expressions of determinism in quantum mechanics

    Get PDF
    The density operator of a quantum state can be represented as a complex joint probability of any two observables whose eigenstates have non-zero mutual overlap. Transformations to a new basis set are then expressed in terms of complex conditional probabilities that describe the fundamental relation between precise statements about the three different observables. Since such transformations merely change the representation of the quantum state, these conditional probabilities provide a state-independent definition of the deterministic relation between the outcomes of different quantum measurements. In this paper, it is shown how classical reality emerges as an approximation to the fundamental laws of quantum determinism expressed by complex conditional probabilities. The quantum mechanical origin of phase spaces and trajectories is identified and implications for the interpretation of quantum measurements are considered. It is argued that the transformation laws of quantum determinism provide a fundamental description of the measurement dependence of empirical reality.Comment: 12 pages, including 1 figure, updated introduction includes references to the historical background of complex joint probabilities and to related work by Lars M. Johanse
    corecore