36 research outputs found
Dataset on nicotine-free, nontransgenic tobacco (Nicotiana tabacum l.) edited by CRISPR-Cas9
This dataset in brief is related to the research letter entitled "Nicotine-free, nontransgenic tobacco (Nicotiana tabacuml.) edited by CRISPR-Cas9" [1]. Cured tobacco products with a significantly reduced nicotine content helps people to overcome their nicotine addiction. Here we summarize additional data and method descriptions of the generation process of a nicotine-free, nontransgenic tobacco plant. This included the cloning, transformation and regeneration of transgenic tobacco plants, followed by the analysis of the nicotine content and genomic modifications caused by CRISPR-Cas9 mediated gene editing. Subsequently, nicotine-free plants were screened for loss of T-DNA cassette, i.e. nontransgenity. Finally, a metabolic footprint was recorded by 1H NMR analysis
Enhanced Planning Of Production Plants: A Case-Based Reasoning Driven Approach
Advanced industrial developments lead to increasingly customized products and shortened product life cycles. In the context of production systems, this necessitates faster engineering of suitable production resources and layouts to cope with the increasing product variety. Current engineering processes rely mainly on adapting already realized solutions and leveraging past experiences to address new project challenges. However, the knowledge about efficient planning processes is often tied to individual employees. These experiences cannot be utilized consistently, particularly in employee departure or absence due to illness. To counteract this problem, companies attempt to digitize and store knowledge in various ways. Nevertheless, the company-wide and person-independent retrieval of crucial information is still difficult or impossible. Influencing factors are, among others, non-standardized information models and forms of description. In response to these challenges, this paper introduces an approach for the standardized modeling and crosscompany provision of experiences in production plant planning. Based on the paradigms of case-based reasoning and vendor-neutral data modeling using AutomationML, a system for selecting production resources and planning related layouts is demonstrated. By determining the similarity of new product structures, whose production facilities have yet to be engineered, with products whose production facilities are already realized, suitable existing solutions regarding production resources and their placement can be submitted explicitly to a planning expert. The approach is exemplified by a scenario of engineering an assembly system for electrolysis stacks. For this purpose, the similarity determination is performed using the Hamming similarity. Thus, it can be shown that case-based reasoning, which is already successfully used in other domains, has a significant potential to accelerate the subprocesses of production plant planning
Tumor-Targeting Peptides: The Functional Screen of Glioblastoma Homing Peptides to the Target Protein FABP3 (MDGI)
We recently identified the glioblastoma homing peptide CooP (CGLSGLGVA) using in vivo phage display screen. The mammary-derived growth inhibitor (MDGI/FABP3) was identified as its interacting partner. Here, we present an alanine scan of A-CooP to investigate the contribution of each amino acid residue to the binding to FABP3 by microscale thermophoresis (MST) and surface plasmon resonance (SPR). We also tested the binding affinity of the A-CooP-K, KA-CooP, and retro-inverso A-CooP analogues to the recombinant FABP3. According to the MST analysis, A-CooP showed micromolar (KD = 2.18 µM) affinity to FABP3. Alanine replacement of most of the amino acids did not affect peptide affinity to FABP3. The A-CooP-K variant showed superior binding affinity, while A-[Ala5]CooP and A-[Ala7]CooP, both replacing a glycine residue with alanine, showed negligible binding to FABP3. These results were corroborated in vitro and in vivo using glioblastoma models. Both A-CooP-K and A-CooP showed excellent binding in vitro and homing in vivo, while A-[Ala5]CooP and control peptides failed to bind the cells or home to the intracranial glioblastoma xenografts. These results provide insight into the FABP3–A-CooP interaction that may be important for future applications of drug conjugate design and development
Tumor-Targeting Peptides: The Functional Screen of Glioblastoma Homing Peptides to the Target Protein FABP3 (MDGI)
We recently identified the glioblastoma homing peptide CooP (CGLSGLGVA) using in vivo phage display screen. The mammary-derived growth inhibitor (MDGI/FABP3) was identified as its interacting partner. Here, we present an alanine scan of A-CooP to investigate the contribution of each amino acid residue to the binding to FABP3 by microscale thermophoresis (MST) and surface plasmon resonance (SPR). We also tested the binding affinity of the A-CooP-K, KA-CooP, and retro-inverso A-CooP analogues to the recombinant FABP3. According to the MST analysis, A-CooP showed micromolar (KD = 2.18 µM) affinity to FABP3. Alanine replacement of most of the amino acids did not affect peptide affinity to FABP3. The A-CooP-K variant showed superior binding affinity, while A-[Ala5]CooP and A-[Ala7]CooP, both replacing a glycine residue with alanine, showed negligible binding to FABP3. These results were corroborated in vitro and in vivo using glioblastoma models. Both A-CooP-K and A-CooP showed excellent binding in vitro and homing in vivo, while A-[Ala5]CooP and control peptides failed to bind the cells or home to the intracranial glioblastoma xenografts. These results provide insight into the FABP3–A-CooP interaction that may be important for future applications of drug conjugate design and development
The scaffold-forming steps of plant alkaloid biosynthesis
Alkaloids from plants are characterised by structural diversity and bioactivity, and maintain a privileged position in both modern and traditional medicines. In recent years, there have been significant advances in elucidating the biosynthetic origins of plant alkaloids. In this review, I will describe the progress made in determining the metabolic origins of the so-called true alkaloids, specialised metabolites derived from amino acids containing a nitrogen heterocycle. By identifying key biosynthetic steps that feature in the majority of pathways, I highlight the key roles played by modifications to primary metabolism, iminium reactivity and spontaneous reactions in the molecular and evolutionary origins of these pathways
Antimicrobial Strategies and Economic Considerations for Polymeric Medical Implants.
Healthcare acquired infections (HAI's) are a worldwide problem that can be exacerbated by surgery and the implantation of polymeric medical devices. The use of polymer based medical devices which incorporate antimicrobial strategies are now becoming an increasingly routine way of trying to prevent the potential for reduce chronic infection and device failure. There are a wide range of potential antimicrobial agents currently being incorporated into such polymers. However, it is difficult to determine which antimicrobial agent provides the greatest infection control. The economics of replacing current methods with impregnated polymer materials further complicates matters. It has been suggested that the use of a holistic system wide approach should to be developed around the implantation of medical devices which minimises the potential risk of infection. However, the use of such different approaches is still being developed. The control of such infections is important for individual patient health and the economic implications for healthcare services
Characterization of Lactobacillus coryniformis DSM 20001(T) Surface Protein Cpf Mediating Coaggregation with and Aggregation among Pathogens
Phenotypic characterization of aggregation phenotypes of Lactobacillus coryniformis revealed that strain DSM 20001(T) coaggregated with Escherichia coli K88, Campylobacter coli, and Campylobacter jejuni but not with other human pathogens. In addition, cells of these pathogens aggregated in the presence of the spent culture supernatant (SCS) of strain DSM 20001(T). Cells of E. coli K88 remained viable in the coaggregates and aggregates for up to 24 h. Both coaggregation and aggregation (co/aggregation) occurred at pH 3.5 to 7.5 and was sensitive to heat (85°C for 15 min) and proteinase K. The co/aggregation-promoting factor (Cpf) was purified, and the gene was identified by PCR with degenerate primers derived from internal amino acid sequences. The cpf gene encoded a 19.9-kDa preprotein with a sec-dependent leader and an isoelectric point of 4.4. The amino acid sequence had no significant similarity to proteins with known functions. Northern analysis revealed not only major transcription from the promoter of cpf but also major transcription from the promoter of the preceding insertion element, ISLco1 belonging to the IS3 family. Recombinant Cpf produced in E. coli mediated aggregation of pathogens comparable to the aggregation obtained with purified Cpf or SCS of strain DSM 20001(T). Cpf could be removed from cells of strain DSM 20001(T) by treatment with 5 M LiCl and could be subsequently reattached to the cell surface by using SCS or recombinant Cpf, which resulted in restoration of the co/aggregation property. These results together with those of the amino acid sequence analysis suggest that Cpf is a novel surface protein of L. coryniformis that mediates co/aggregation of some pathogens