18 research outputs found
Understanding continent-wide variation in vulture ranging behavior to assess feasibility of Vulture Safe Zones in Africa: Challenges and possibilities
Protected areas are intended as tools in reducing threats to wildlife and preserving habitat for their long-term population persistence. Studies on ranging behavior provide insight into the utility of protected areas. Vultures are one of the fastest declining groups of birds globally and are popular subjects for telemetry studies, but continent-wide studies are lacking. To address how vultures use space and identify the areas and location of possible vulture safe zones, we assess home range size and their overlap with protected areas by species, age, breeding status, season, and region using a large continent-wide telemetry datasets that includes 163 individuals of three species of threatened Gyps vulture. Immature vultures of all three species had larger home ranges and used a greater area outside of protected areas than breeding and non-breeding adults. Cape vultures had the smallest home range sizes and the lowest level of overlap with protected areas. Rüppell\u27s vultures had larger home range sizes in the wet season, when poisoning may increase due to human-carnivore conflict. Overall, our study suggests challenges for the creation of Vulture Safe Zones to protect African vultures. At a minimum, areas of 24,000 km2 would be needed to protect the entire range of an adult African White-backed vulture and areas of more than 75,000 km2 for wider-ranging Rüppell\u27s vultures. Vulture Safe Zones in Africa would generally need to be larger than existing protected areas, which would require widespread conservation activities outside of protected areas to be successful
Diurnal timing of nonmigratory movement by birds: the importance of foraging spatial scales
Timing of activity can reveal an organism's efforts to optimize foraging either by minimizing energy loss through passive movement or by maximizing energetic gain through foraging. Here, we assess whether signals of either of these strategies are detectable in the timing of activity of daily, local movements by birds. We compare the similarities of timing of movement activity among species using six temporal variables: start of activity relative to sunrise, end of activity relative to sunset, relative speed at midday, number of movement bouts, bout duration and proportion of active daytime hours. We test for the influence of flight mode and foraging habitat on the timing of movement activity across avian guilds. We used 64 570 days of GPS movement data collected between 2002 and 2019 for local (non‐migratory) movements of 991 birds from 49 species, representing 14 orders. Dissimilarity among daily activity patterns was best explained by flight mode. Terrestrial soaring birds began activity later and stopped activity earlier than pelagic soaring or flapping birds. Broad‐scale foraging habitat explained less of the clustering patterns because of divergent timing of active periods of pelagic surface and diving foragers. Among pelagic birds, surface foragers were active throughout all 24 hrs of the day while diving foragers matched their active hours more closely to daylight hours. Pelagic surface foragers also had the greatest daily foraging distances, which was consistent with their daytime activity patterns. This study demonstrates that flight mode and foraging habitat influence temporal patterns of daily movement activity of birds.We thank the Nature Conservancy, the Bailey Wildlife Foundation, the Bluestone Foundation, the Ocean View Foundation, Biodiversity Research Institute, the Maine Outdoor Heritage Fund, the Davis Conservation Foundation and The U.S. Department of Energy (DE‐EE0005362), and the Darwin Initiative (19-026), EDP S.A. ‘Fundação para a Biodiversidade’ and the Portuguese Foundation for Science and Technology (FCT) (DL57/2019/CP 1440/CT 0021), Enterprise St Helena (ESH), Friends of National Zoo Conservation Research Grant Program and Conservation Nation, ConocoPhillips Global Signature Program, Maryland Department of Natural Resources, Cellular Tracking Technologies and Hawk Mountain Sanctuary for providing funding and in-kind support for the GPS data used in our analyses
Tracking data highlight the importance of human-induced mortality for large migratory birds at a flyway scale
Human-induced direct mortality affects huge numbers of birds each year, threatening hundreds of species worldwide. Tracking technologies can be an important tool to investigate temporal and spatial patterns of bird mortality as well as their drivers. We compiled 1704 mortality records from tracking studies across the African-Eurasian flyway for 45 species, including raptors, storks, and cranes, covering the period from 2003 to 2021. Our results show a higher frequency of human-induced causes of mortality than natural causes across taxonomic groups, geographical areas, and age classes. Moreover, we found that the frequency of human-induced mortality remained stable over the study period. From the human-induced mortality events with a known cause (n = 637), three main causes were identified: electrocution (40.5 %), illegal killing (21.7 %), and poisoning (16.3 %). Additionally, combined energy infrastructure-related mortality (i.e., electrocution, power line collision, and wind-farm collision) represented 49 % of all human-induced mortality events. Using a random forest model, the main predictors of human-induced mortality were found to be taxonomic group, geographic location (latitude and longitude), and human footprint index value at the location of mortality. Despite conservation efforts, human drivers of bird mortality in the African-Eurasian flyway do not appear to have declined over the last 15 years for the studied group of species. Results suggest that stronger conservation actions to address these threats across the flyway can reduce their impacts on species. In particular, projected future development of energy infrastructure is a representative example where application of planning, operation, and mitigation measures can enhance bird conservation
Complete mitochondrial genome of the giant root-rat (<i>Tachyoryctes macrocephalus</i>)
The endangered giant root-rat (Tachyoryctes macrocephalus, also known as giant mole rat) is a fossorial rodent endemic to the afro-alpine grasslands of the Bale Mountains in Ethiopia. The species is an important ecosystem engineer with the majority of the global population found within 1000 km(2). Here, we present the first complete mitochondrial genome of the giant root-rat and the genus Tachyoryctes, recovered using shotgun sequencing and iterative mapping. A phylogenetic analysis including 15 other representatives of the family Spalacidae placed Tachyoryctes as sister genus to Rhizomys with high support. This position is in accordance with a recent study revealing the topology of the Spalacidae family. The full mitochondrial genome of the giant root-rat presents an important resource for further population genetic studies
Large birds travel farther in homogeneous environments
Aim: Animal movement is an important determinant of individual survival, population dynamics and ecosystem structure and function. Nonetheless, it is still unclear how local movements are related to resource availability and the spatial arrangement of resources. Using resident bird species and migratory bird species outside the migratory period, we examined how the distribution of resources affects the movement patterns of both large terrestrial birds (e.g., raptors, bustards and hornbills) and waterbirds (e.g., cranes, storks, ducks, geese and flamingos). Location: Global. Time period: 2003–2015. Major taxa studied: Birds. Methods: We compiled GPS tracking data for 386 individuals across 36 bird species. We calculated the straight‐line distance between GPS locations of each individual at the 1‐hr and 10‐day time‐scales. For each individual and time‐scale, we calculated the median and 0.95 quantile of displacement. We used linear mixed‐effects models to examine the effect of the spatial arrangement of resources, measured as enhanced vegetation index homogeneity, on avian movements, while accounting for mean resource availability, body mass, diet, flight type, migratory status and taxonomy and spatial autocorrelation. Results: We found a significant effect of resource spatial arrangement at the 1‐hr and 10‐day time‐scales. On average, individual movements were seven times longer in environments with homogeneously distributed resources compared with areas of low resource homogeneity. Contrary to previous work, we found no significant effect of resource availability, diet, flight type, migratory status or body mass on the non‐migratory movements of birds. Main conclusions: We suggest that longer movements in homogeneous environments might reflect the need for different habitat types associated with foraging and reproduction. This highlights the importance of landscape complementarity, where habitat patches within a landscape include a range of different, yet complementary resources. As habitat homogenization increases, it might force birds to travel increasingly longer distances to meet their diverse needs.National Trust for Scotland; Penguin Foundation; The U.S. Department of Energy, Grant/Award Number: DE-EE0005362; Australian Research Council; NASA's Arctic Boreal Vulnerability Experiment (ABoVE), Grant/Award Number: NNX15AV92A; Netherlands Organization for Scientific Research, Grant/Award Number: VIDI 864.10.006; BCC; NSF Award, Grant/Award Number: ABI-1458748; U.K. Department for Energy and Climate Change; ‘Juan de la Cierva ‐ Incorporación’ postdoctoral grant; Irish Research Council, Grant/Award Number: GOIPD/2015/81 ; DECC; Goethe International Postdoctoral Programme, People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007‐2013/ under REA grant agreement no [291776]; German Aerospace Center Award, Grant/Award Number: 50JR1601; Scottish Natural Heritage; Solway Coast AONB Sustainable Development Fund; COWRIE Ltd.; Heritage Lottery Fund; Robert Bosch Stiftung; NSF Division of Biological Infrastructure Award, Grant/Award Number: 1564380; Spanish Ministry of Economy and Competitiveness, Grant/Award Number: IJCI-2014-19190; Energinet.dk; NASA Award, Grant/Award Number: NNX15AV92A; MAVA Foundation; Fundação para a Ciência e Tecnologia, Grant/Award Number: SFRH/BPD/118635/2016; National Key R&D Program of China, Grant/Award Number: 2016YFC0500406; Green Fund of the Greek Ministry of Environmen
Tracking data highlight the importance of human-induced mortality for large migratory birds at a flyway scale
Human-induced direct mortality affects huge numbers of birds each year, threatening hundreds of species worldwide. Tracking technologies can be an important tool to investigate temporal and spatial patterns of bird mortality as well as their drivers. We compiled 1704 mortality records from tracking studies across the African-Eurasian flyway for 45 species, including raptors, storks, and cranes, covering the period from 2003 to 2021. Our results show a higher frequency of human-induced causes of mortality than natural causes across taxonomic groups, geographical areas, and age classes. Moreover, we found that the frequency of human-induced mortality remained stable over the study period. From the human-induced mortality events with a known cause (n = 637), three main causes were identified: electrocution (40.5 %), illegal killing (21.7 %), and poisoning (16.3 %). Additionally, combined energy infrastructure-related mortality (i.e., electrocution, power line collision, and wind-farm collision) represented 49 % of all human-induced mortality events. Using a random forest model, the main predictors of human-induced mortality were found to be taxonomic group, geographic location (latitude and longitude), and human footprint index value at the location of mortality. Despite conservation efforts, human drivers of bird mortality in the African-Eurasian flyway do not appear to have declined over the last 15 years for the studied group of species. Results suggest that stronger conservation actions to address these threats across the flyway can reduce their impacts on species. In particular, projected future development of energy infrastructure is a representative example where application of planning, operation, and mitigation measures can enhance bird conservation.publishedVersio
Understanding continent-wide variation in vulture ranging behavior to assess feasibility of Vulture Safe Zones in Africa:challenges and possibilities
Protected areas are intended as tools in reducing threats to wildlife and preserving habitat for their long-term population persistence. Studies on ranging behavior provide insight into the utility of protected areas. Vultures are one of the fastest declining groups of birds globally and are popular subjects for telemetry studies, but continent-wide studies are lacking. To address how vultures use space and identify the areas and location of possible vulture safe zones, we assess home range size and their overlap with protected areas by species, age, breeding status, season, and region using a large continent-wide telemetry datasets that includes 163 individuals of three species of threatened Gyps vulture. Immature vultures of all three species had larger home ranges and used a greater area outside of protected areas than breeding and non-breeding adults. Cape vultures had the smallest home range sizes and the lowest level of overlap with protected areas. Rüppell's vultures had larger home range sizes in the wet season, when poisoning may increase due to human-carnivore conflict. Overall, our study suggests challenges for the creation of Vulture Safe Zones to protect African vultures. At a minimum, areas of 24,000 km2 would be needed to protect the entire range of an adult African White-backed vulture and areas of more than 75,000 km2 for wider-ranging Rüppell's vultures. Vulture Safe Zones in Africa would generally need to be larger than existing protected areas, which would require widespread conservation activities outside of protected areas to be successful
Understanding continent-wide variation in vulture ranging behavior to assess feasibility of vulture safe zones in Africa : challenges and possibilities
Protected areas are intended as tools in reducing threats to wildlife and preserving habitat for their long-term population persistence. Studies on ranging behavior provide insight into the utility of protected areas. Vultures are one of the fastest declining groups of birds globally and are popular subjects for telemetry studies, but continent-wide studies are lacking. To address how vultures use space and identify the areas and location of possible vulture safe zones, we assess home range size and their overlap with protected areas by species, age, breeding status, season, and region using a large continent-wide telemetry datasets that includes 163 individuals of three species of threatened Gyps vulture. Immature vultures of all three species had larger home ranges and used a greater area outside of protected areas than breeding and non-breeding adults. Cape vultures had the smallest home range sizes and the lowest level of overlap with protected areas. Rüppell's vultures had larger home range sizes in the wet season, when poisoning may increase due to human-carnivore conflict. Overall, our study suggests challenges for the creation of Vulture Safe Zones to protect African vultures. At a minimum, areas of 24,000 km2 would be needed to protect the entire range of an adult African White-backed vulture and areas of more than 75,000 km2 for wider-ranging Rüppell's vultures. Vulture Safe Zones in Africa would generally need to be larger than existing protected areas, which would require widespread conservation activities outside of protected areas to be successful.North Carolina Zoo; Wildlife Conservation Society; Association of Zoos and Aquariums (AZA), AZA SAFE (Saving Animals From Extinction), Dallas Zoo, Disney Conservation Fund, Leiden Conservation Foundation, National Geographic Society, Taronga Conservation Society Australia, and The Mohamed bin Zayed Species Conservation Fund.https://www.elsevier.com/locate/biocon2024-03-16hj2022Mammal Research InstituteZoology and Entomolog