38 research outputs found
Inhomogeneous scalar field solutions and inflation
We present new exact cosmological inhomogeneous solutions for gravity coupled
to a scalar field in a general framework specified by the parameter .
The equations of motion (and consequently the solutions) in this framework
correspond either to low-energy string theory or Weyl integrable spacetime
according to the sign of . We show that different inflationary
behaviours are possible, as suggested by the study of the violation of the
strong energy condition. Finally, by the analysis of certain curvature scalars
we found that some of the solutions may be nonsingular.Comment: LaTex file, 14 page
On the back reaction of gravitational and particle emission and absorption from straight thick cosmic strings: A toy model
The emission and absorption of gravitational waves and massless particles of
an infinitely long straight cosmic string with finite thickness are studied. It
is shown in a general term that the back reaction of the emission and
absorption {\em always} makes the symmetry axis of the string singular. The
singularity is a scalar singularity and cannot be removed.Comment: To appear in Gen. Relativ. Gra
Kaluza-Klein Induced Gravity Inflation
A D-dimensional induced gravity theory is studied carefully in a
dimensional Friedmann-Robertson-Walker space-time. We try to extract
information of the symmetry breaking potential in search of an inflationary
solution with non-expanding internal-space. We find that the induced gravity
model imposes strong constraints on the form of symmetry breaking potential in
order to generate an acceptable inflationary universe. These constraints are
analyzed carefully in this paper.Comment: 10 pages, title changed, corrected some typos, two additional
comments adde
Inflationary Universe in Higher Derivative Induced Gravity
In an induced-gravity model, the stability condition of an inflationary
slow-rollover solution is shown to be . The presence of higher derivative terms
will, however, act against the stability of this expanding solution unless
further constraints on the field parameters are imposed. We find that these
models will acquire a non-vanishing cosmological constant at the end of
inflation. Some models are analyzed for their implication to the early
universe.Comment: 6 pages, two typos correcte
Imaging the dephasing of spin wave modes in a square thin film magnetic element
Copyright © 2004 The American Physical SocietyWe have used time-resolved scanning Kerr effect microscopy to study dephasing of spin wave modes in a square Ni81Fe19 element of 10 μm width and 150 nm thickness. When a static magnetic field H was applied parallel to an edge of the square, demagnetized regions appeared at the edges orthogonal to the field. When H was applied along a diagonal, a demagnetized region appeared along the opposite diagonal. Time-resolved images of the out-of-plane magnetization component showed stripes that lie perpendicular to H and indicate the presence of spin wave modes with wave vector parallel to the static magnetization. The transient Kerr rotation was measured at different positions along an axis parallel to H, and the power spectra revealed a number of different modes. Micromagnetic simulations reproduce both the observed images and the mode frequencies. This study allows us to understand an anisotropic damping observed at the center of the square element in terms of dephasing of the resonant mode spectrum