380 research outputs found
Quantitative tunneling spectroscopy of nanocrystals
The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene"Â refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]). Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronic
Recommended from our members
Quantitative tunneling spectroscopy of nanocrystals
The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene"Â refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]). Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronic
Chirality in Bare and Passivated Gold Nanoclusters
Chiral structures have been found as the lowest-energy isomers of bare
(Au and Au_{28}(SCH_{16}_{38}(SCH_{3})_{24}) gold nanoclusters. The degree of chirality existing in
the chiral clusters was calculated using the Hausdorff chirality measure. We
found that the index of chirality is higher in the passivated clusters and
decreases with the cluster size. These results are consistent with the observed
chiroptical activity recently reported for glutahione-passivated gold
nanoclusters, and provide theoretical support for the existence of chirality in
these novel compounds.Comment: 5 pages, 1 figure. Submitted to PR
DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response
Surface plasmon resonances generated in metallic nanostructures can be
utilized to tailor electromagnetic fields. The precise spatial arrangement of
such structures can result in surprising optical properties that are not found
in any naturally occurring material. Here, the designed activity emerges from
collective effects of singular components equipped with limited individual
functionality. Top-down fabrication of plasmonic materials with a predesigned
optical response in the visible range by conventional lithographic methods has
remained challenging due to their limited resolution, the complexity of
scaling, and the difficulty to extend these techniques to three-dimensional
architectures. Molecular self-assembly provides an alternative route to create
such materials which is not bound by the above limitations. We demonstrate how
the DNA origami method can be used to produce plasmonic materials with a
tailored optical response at visible wavelengths. Harnessing the assembly power
of 3D DNA origami, we arranged metal nanoparticles with a spatial accuracy of 2
nm into nanoscale helices. The helical structures assemble in solution in a
massively parallel fashion and with near quantitative yields. As a designed
optical response, we generated giant circular dichroism and optical rotary
dispersion in the visible range that originates from the collective
plasmon-plasmon interactions within the nanohelices. We also show that the
optical response can be tuned through the visible spectrum by changing the
composition of the metal nanoparticles. The observed effects are independent of
the direction of the incident light and can be switched by design between left-
and right-handed orientation. Our work demonstrates the production of complex
bulk materials from precisely designed nanoscopic assemblies and highlights the
potential of DNA self-assembly for the fabrication of plasmonic nanostructures.Comment: 5 pages, 4 figure
Density functional study of Au (n=2-20) clusters: lowest-energy structures and electronic properties
We have investigated the lowest-energy structures and electronic properties
of the Au(n=2-20) clusters based on density functional theory (DFT) with
local density approximation. The small Au clusters adopt planar structures
up to n=6. Tabular cage structures are preferred in the range of n=10-14 and a
structural transition from tabular cage-like structure to compact
near-spherical structure is found around n=15. The most stable configurations
obtained for Au and Au clusters are amorphous instead of
icosahedral or fcc-like, while the electronic density of states sensitively
depend on the cluster geometry. Dramatic odd-even alternative behaviors are
obtained in the relative stability, HOMO-LUMO gaps and ionization potentials of
gold clusters. The size evolution of electronic properties is discussed and the
theoretical ionization potentials of Au clusters compare well with
experiments.Comment: 6 pages, 7 figure
astroplan: An Open Source Observation Planning Package in Python
We present astroplan - an open source, open development, Astropy affiliated package for ground-based observation planning and scheduling in Python. astroplan is designed to provide efficient access to common observational quantities such as celestial rise, set, and meridian transit times and simple transformations from sky coordinates to altitude-azimuth coordinates without requiring a detailed understanding of astropy's implementation of coordinate systems. astroplan provides convenience functions to generate common observational plots such as airmass and parallactic angle as a function of time, along with basic sky (finder) charts. Users can determine whether or not a target is observable given a variety of observing constraints, such as airmass limits, time ranges, Moon illumination/separation ranges, and more. A selection of observation schedulers are included which divide observing time among a list of targets, given observing constraints on those targets. Contributions to the source code from the community are welcome
Cancer-selective, single agent chemoradiosensitising gold nanoparticles
Two nanometre gold nanoparticles (AuNPs), bearing sugar moieties and/or thiol-polyethylene glycol-amine (PEG-amine), were synthesised and evaluated for their in vitro toxicity and ability to radiosensitise cells with 220 kV and 6 MV X-rays, using four cell lines representing normal and cancerous skin and breast tissues. Acute 3 h exposure of cells to AuNPs, bearing PEG-amine only or a 50:50 ratio of alpha-galactose derivative and PEG-amine resulted in selective uptake and toxicity towards cancer cells at unprecedentedly low nanomolar concentrations. Chemotoxicity was prevented by co-administration of N-acetyl cysteine antioxidant, or partially prevented by the caspase inhibitor Z-VAD-FMK. In addition to their intrinsic cancer-selective chemotoxicity, these AuNPs acted as radiosensitisers in combination with 220 kV or 6 MV X-rays. The ability of AuNPs bearing simple ligands to act as cancer-selective chemoradiosensitisers at low concentrations is a novel discovery that holds great promise in developing low-cost cancer nanotherapeutics
- …