1,107 research outputs found
Thomas-Fermi Calculations of Atoms and Matter in Magnetic Neutron Stars II: Finite Temperature Effects
We present numerical calculations of the equation of state for dense matter
in high magnetic fields, using a temperature dependent Thomas-Fermi theory with
a magnetic field that takes all Landau levels into account. Free energies for
atoms and matter are also calculated as well as profiles of the electron
density as a function of distance from the atomic nucleus for representative
values of the magnetic field strength, total matter density, and temperature.
The Landau shell structure, which is so prominent in cold dense matter in high
magnetic fields, is still clearly present at finite temperature as long as it
is less than approximately one tenth of the cyclotron energy. This structure is
reflected in an oscillatory behaviour of the equation of state and other
thermodynamic properties of dense matter and hence also in profiles of the
density and pressure as functions of depth in the surface layers of magnetic
neutron stars. These oscillations are completely smoothed out by thermal
effects at temperatures of the order of the cyclotron energy or higher.Comment: 37 pages, 17 figures included, submitted to Ap
Quantum Drag Forces on a Sphere Moving Through a Rarefied Gas
As an application of quantum fluid mechanics, we consider the drag force
exerted on a sphere by an ultra-dilute gas. Quantum mechanical diffraction
scattering theory enters in that regime wherein the mean free path of a
molecule in the gas is large compared with the sphere radius. The drag force is
computed in a model specified by the ``sticking fraction'' of events in which a
gaseous molecule is adsorbed by the spherical surface. Classical inelastic
scattering theory is shown to be inadequate for physically reasonable sticking
fraction values. The quantum mechanical scattering drag force is exhibited
theoretically and compared with experimental data.Comment: 5 pages no figure
Integral Equations for Heat Kernel in Compound Media
By making use of the potentials of the heat conduction equation the integral
equations are derived which determine the heat kernel for the Laplace operator
in the case of compound media. In each of the media the parameter
acquires a certain constant value. At the interface of the media the
conditions are imposed which demand the continuity of the `temperature' and the
`heat flows'. The integration in the equations is spread out only over the
interface of the media. As a result the dimension of the initial problem is
reduced by 1. The perturbation series for the integral equations derived are
nothing else as the multiple scattering expansions for the relevant heat
kernels. Thus a rigorous derivation of these expansions is given. In the one
dimensional case the integral equations at hand are solved explicitly (Abel
equations) and the exact expressions for the regarding heat kernels are
obtained for diverse matching conditions. Derivation of the asymptotic
expansion of the integrated heat kernel for a compound media is considered by
making use of the perturbation series for the integral equations obtained. The
method proposed is also applicable to the configurations when the same medium
is divided, by a smooth compact surface, into internal and external regions, or
when only the region inside (or outside) this surface is considered with
appropriate boundary conditions.Comment: 26 pages, no figures, no tables, REVTeX4; two items are added into
the Reference List; a new section is added, a version that will be published
in J. Math. Phy
Joule heating and the thermal evolution of old neutron stars
We consider Joule heating caused by dissipation of the magnetic field in the
neutron star crust. This mechanism may be efficient in maintaining a relatively
high surface temperature in very old neutron stars. Calculations of the thermal
evolution show that, at the late evolutionary stage ( Myr), the
luminosity of the neutron star is approximately equal to the energy released
due to the field dissipation and is practically independent of the atmosphere
models. At this stage, the surface temperature can be of the order of K. Joule heating can maintain this high temperature during
extremely long time ( Myr), comparable with the decay time of the
magnetic field.Comment: 13 pages (5 figures in the text). Accepted for publication in The
Astrophysical Journa
PEN: a low energy test of lepton universality
Allowed charged meson decays are characterized by simple dynamics, few
available decay channels, mainly into leptons, and extremely well controlled
radiative and loop corrections. In that sense, pion decays represent a
veritable triumph of the standard model (SM) of elementary particles and
interactions. This relative theoretical simplicity makes charged pion decays a
sensitive means for testing the underlying symmetries and the universality of
weak fermion couplings, as well as for studying pion structure and chiral
dynamics. Even after considerable recent improvements, experimental precision
is lagging far behind that of the theoretical description for pion decays. We
review the current state of experimental study of the pion electronic decay
, or , where the
indicates inclusion and explicit treatment of radiative decay events. We
briefly review the limits on non-SM processes arising from the present level of
experimental precision in decays. Focusing on the PEN
experiment at the Paul Scherrer Institute (PSI), Switzerland, we examine the
prospects for further improvement in the near term.Comment: 11 pages, 5 figures; paper presented at the XIII International
Conference on Heavy Quarks and Leptons, 22-27 May 2016, Blacksburg, Virginia,
US
PEN experiment: a precise measurement of the pi+ -> e+ nu decay branching fraction
A new measurement of , the decay
branching ratio, is currently under way at the Paul Scherrer Institute. The
present experimental result on constitutes the most accurate test
of lepton universality available. The accuracy, however, still lags behind the
theoretical precision by over an order of magnitude. Because of the large
helicity suppression of the decay, its branching ratio is
susceptible to significant contributions from new physics, making this decay a
particularly suitable subject of study.Comment: 4 pages, 3 figures, talk given at the Tenth Conference on the
Intersections of Particle and Nuclear Physics (CIPANP 2009), La Jolla/San
Diego, CA, 26-31 May 2009; to appear in Proceedings to be published by the
American Institute of Physic
- …