61 research outputs found

    Evaluation of the similarity of gene expression data estimated with SAGE and Affymetrix GeneChips

    Get PDF
    BACKGROUND: Serial Analysis of Gene Expression (SAGE) and microarrays have found awidespread application, but much ambiguity exists regarding the evaluation of these technologies. Cross-platform utilization of gene expression data from the SAGE and microarray technology could reduce the need for duplicate experiments and facilitate a more extensive exchange of data within the research community. This requires a measure for the correspondence of the different gene expression platforms. To date, a number of cross-platform evaluations (including a few studies using SAGE and Affymetrix GeneChips) have been conducted showing a variable, but overall low, concordance. This study evaluates these overall measures and introduces the between-ratio difference as a concordance measure pergene. RESULTS: In this study, gene expression measurements of Unigene clusters represented by both Affymetrix GeneChips HG-U133A and SAGE were compared using two independent RNA samples. After matching of the data sets the final comparison contains a small data set of 1094 unique Unigene clusters, which is unbiased with respect to expression level. Different overall correlation approaches, like Up/Down classification, contingency tables and correlation coefficients were used to compare both platforms. In addition, we introduce a novel approach to compare two platforms based on the calculation of differences between expression ratios observed in each platform for each individual transcript. This approach results in a concordance measure per gene (with statistical probability value), as opposed to the commonly used overall concordance measures between platforms. CONCLUSION: We can conclude that intra-platform correlations are generally good, but that overall agreement between the two platforms is modest. This might be due to the binomially distributed sampling variation in SAGE tag counts, SAGE annotation errors and the intensity variation between probe sets of a single gene in Affymetrix GeneChips. We cannot identify or advice which platform performs better since both have their (dis)-advantages. Therefore it is strongly recommended to perform follow-up studies of interesting genes using additional techniques. The newly introduced between-ratio difference is a filtering-independent measure for between-platform concordance. Moreover, the between-ratio difference per gene can be used to detect transcripts with similar regulation on both platforms

    Cortisol Acting Through the Glucocorticoid Receptor Is Not Involved in Exercise-Enhanced Growth, But Does Affect the White Skeletal Muscle Transcriptome in Zebrafish (Danio rerio)

    Get PDF
    Forced sustained swimming exercise at optimal speed enhances growth in many fish species, particularly through hypertrophy of the white skeletal muscle. The exact mechanism of this effect has not been resolved yet. To explore the role of cortisol, we first subjected wild-type zebrafish to an exercise protocol validated for exercise-enhanced growth, and showed that exercised zebrafish, which indeed showed enhanced growth, had higher cortisol levels than the non-exercised controls. A central role was therefore hypothesized for the steroid hormone cortisol acting through the Glucocorticoid receptor (Gr). Second, we subjected wild-type zebrafish and zebrafish with a mutant Gr to exercise at optimal, suboptimal, and super-optimal speeds and compared them with non-exercised controls. Exercised zebrafish showed growth enhancement at all speeds, with highest growth at optimal speeds. In the Gr mutant fish, exercise resulted in growth enhancement similar to wild-type zebrafish, indicating that cortisol signaling through Gr cannot be considered as a main determinant of exercise-enhanced growth. Finally, the transcriptome of white skeletal muscle tissue was analyzed by RNA sequencing. The results of this analysis showed that in the muscle tissue of Gr mutant fish a lower number of genes is regulated by exercise than in wild-type fish (183 vs. 351). A cluster of 36 genes was regulated by exercise in both wild-type and mutant fish, and in this cluster genes involved in transcriptional regulation and protein ubiquitination were overrepresented. Because these two processes appear to be regulated in both wild type and mutant fish, which both display exercise-enhanced growth, we suggest that they play an important role in the growth of muscles upon exercise

    Less bleeding by omitting aspirin in non-ST-segment elevation acute coronary syndrome patients: Rationale and design of the LEGACY study

    Get PDF
    BACKGROUND: Early aspirin withdrawal, also known as P2Y12-inhibitor monotherapy, following percutaneous coronary intervention (PCI) for non-ST-segment elevation acute coronary syndrome (NSTE-ACS) can reduce bleeding without a trade-off in efficacy. Still the average daily bleeding risk is highest during the first months and it remains unclear if aspirin can be omitted immediately following PCI. METHODS: The LEGACY study is an open-label, multicenter randomized controlled trial evaluating the safety and efficacy of immediate P2Y12-inhibitor monotherapy versus dual antiplatelet therapy (DAPT) for 12 months in 3,090 patients. Patients are randomized immediately following successful PCI for NSTE-ACS to 75-100 mg aspirin once daily versus no aspirin. The primary hypothesis is that immediately omitting aspirin is superior to DAPT with respect to major or minor bleeding defined as Bleeding Academic Research Consortium type 2, 3, or 5 bleeding, while maintaining noninferiority for the composite of all-cause mortality, myocardial infarction and stroke compared to DAPT. CONCLUSIONS: The LEGACY study is the first randomized study that is specifically designed to evaluate the impact of immediately omitting aspirin, and thus treating patients with P2Y12-inhibitor monotherapy, as compared to DAPT for 12 months on bleeding and ischemic events within 12 months following PCI for NSTE-ACS

    Immune Modulations by Glucocorticoids: From Molecular Biology to Clinical Research

    No full text
    Due to their potent anti-inflammatory and immune-suppressive actions, glucocorticoids have been used in the treatment of inflammatory and autoimmune disease for more than 70 years [...

    Molecular Determinants of Glucocorticoid Receptor Mobility in Living Cells: the Importance of Ligand Affinity

    No full text
    The actions of glucocorticoids are mediated by the glucocorticoid receptor (GR), which is activated upon ligand binding, and can alter the expression of target genes either by transrepression or transactivation. We have applied FRAP (fluorescence recovery after photobleaching) to quantitatively assess the mobility of the yellow fluorescent protein (YFP)-tagged human GR α-isoform (hGRα) in the nucleus of transiently transfected COS-1 cells and to elucidate determinants of its mobility. Addition of the high-affinity agonist dexamethasone markedly decreases the mobility of the receptor in a concentration-dependent manner, whereas low-affinity ligands like corticosterone decrease the mobility to a much lesser extent. Analysis of other hGRα ligands differing in affinity suggests that it is the affinity of the ligand that is a major determinant of the decrease in mobility. Similar results were observed for two hGRα antagonists, the low-affinity antagonist ZK98299 and the high-affinity antagonist RU486. The effect of ligand affinity on mobility was confirmed with the hGRα mutant Q642V, which has an altered affinity for triamcinolone acetonide, dexamethasone, and corticosterone. Analysis of hGRα deletion mutants indicates that both the DNA-binding domain and the ligand-binding domain of the receptor are required for a maximal ligand-induced decrease in receptor mobility. Interestingly, the mobility of transfected hGRα differs among cell types. Finally, the proteasome inhibitor MG132 immobilizes a subpopulation of unliganded receptors, via a mechanism requiring the DNA-binding domain and the N-terminal part of the ligand-binding domain. Ligand binding makes the GR resistant to the immobilizing effect of MG132, and this effect depends on the affinity of the ligand. Our data suggest that ligand binding induces a conformational change of the receptor which is dependent on the affinity of the ligand. This altered conformation decreases the mobility of the receptor, probably by targeting the receptor to relatively immobile nuclear domains with which it transiently associates. In addition, this conformational change blocks immobilization of the receptor by MG132

    Statistical Comparison of Two or More SAGE Libraries: One Tag at the Time

    No full text

    Ginsenoside Rg1 Acts as a Selective Glucocorticoid Receptor Agonist with Anti-Inflammatory Action without Affecting Tissue Regeneration in Zebrafish Larvae

    No full text
    Glucocorticoids are effective anti-inflammatory drugs, but their clinical use is complicated due to the wide range of side effects they induce. Patients requiring glucocorticoid therapy would benefit from more selective glucocorticoid receptor (GR) agonists, capable of attenuating the immune response without causing these side effects. Ginsenosides, such as the compound Rg1, are natural plant compounds with structural similarity to classical glucocorticoids and well-documented anti-inflammatory effects. Here, we have investigated the activity of the ginsenoside Rg1 using a zebrafish larval model, in which amputation of the tail fin allows us to assess drug effects on inflammation, while the ability to regenerate the wounded tissue serves as a readout for side effects. We found that Rg1 attenuates neutrophilic inflammation at the amputation site, similarly to a classical glucocorticoid, beclomethasone. Mutation of the Gr abolishes this anti-inflammatory effect of Rg1. Rg1 and beclomethasone differentially modulate gene expression, suggesting that Rg1 induces transrepression, but not transactivation, activity of Gr. Interestingly, we found no effect of Rg1 on tissue regeneration, whereas beclomethasone inhibits tissue regeneration entirely. We conclude that Rg1 is a promising candidate for development as a selective glucocorticoid drug, and that zebrafish larvae provide a useful model system for screening of such GR agonists
    • …
    corecore