3 research outputs found

    Phylogeography of Francisella tularensis subspecies holarctica and epidemiology of tularemia in Switzerland.

    Get PDF
    Tularemia, an endemic disease that mainly affects wild animals and humans, is caused by Francisella tularensis subsp. holarctica (Fth) in Switzerland. The Swiss Fth population consist of multiple different subclades which are distributed throughout the country. The aim of this study is to characterize the genetic diversity of Fth in Switzerland and to describe the phylogeographic relationship of isolates by single nucleotide polymorphism (SNP) analysis. This analysis is combined with human surveillance data from reported cases over the last 10 years and in vitro and in silico antibiotic resistance tests to provide insight into the epidemiology of tularemia in Switzerland. We sequenced the whole genomes of 52 Fth strains of human or tick origin collected in Switzerland between 2009 and 2022 and analyzed together with all publicly available sequencing data of Swiss and European Fth. Next, we performed a preliminary classification with the established canonical single nucleotide polymorphism nomenclature. Furthermore, we tested 20 isolates from all main Swiss clades for antimicrobial susceptibility against a panel of antimicrobial agents. All 52 sequenced isolates from Switzerland belong to major clade B.6, specifically subclades B.45 and B.46, previously described in Western Europe. We were able to accurately reconstruct the population structure according to the global phylogenetic framework. No resistance to clinically recommended antibiotics could be identified in vitro or in silico in the western B.6 strains

    Functional characterization of Francisella tularensis subspecies holarctica genotypes during tick cell and macrophage infections using a proteogenomic approach

    Get PDF
    Tularemia is a vector-borne disease caused by the Gram-negative bacterium Francisella tularensis. Known hosts and vectors in Europe are hare and ticks. F. tularensis is transmitted from ticks and animals, but also from the hydrotelluric environment and the consumption of contaminated water or food. A changing climate expands the range in which ticks can live and consequently might contribute to increasing case numbers of tularemia. Two subspecies of F. tularensis are human pathogenic. Francisella tularensis tularensis (Ftt) is endemic in North America, while Francisella tularensis holarctica (Fth) is the only subspecies causing tularemia in Europe. Ft is classified as a category A bioterrorism agent due to its low infectious dose, multiple modes of transmission, high infectivity and potential for airborne transmission and has become a global public health concern. In line with the European survey and previous phylogenetic studies, Switzerland shows the co-distribution of B.6 and B.12 strains with different geographical distribution and prevalence within the country. To establish itself in different host environments of ticks and mammals, F. tularensis presumably undergoes substantial changes on the transcriptomics and proteomic level. Here we investigate the transcriptomic and proteomic differences of five strains of Fth upon infection of rabbit macrophages and tick cells

    Functional characterization of Francisella tularensis subspecies holarctica genotypes during tick cell and macrophage infections using a proteogenomic approach.

    Get PDF
    Tularemia is a vector-borne disease caused by the Gram-negative bacterium Francisella tularensis. Known hosts and vectors in Europe are hare and ticks. F. tularensis is transmitted from ticks and animals, but also from the hydrotelluric environment and the consumption of contaminated water or food. A changing climate expands the range in which ticks can live and consequently might contribute to increasing case numbers of tularemia. Two subspecies of F. tularensis are human pathogenic. Francisella tularensis tularensis (Ftt) is endemic in North America, while Francisella tularensis holarctica (Fth) is the only subspecies causing tularemia in Europe. Ft is classified as a category A bioterrorism agent due to its low infectious dose, multiple modes of transmission, high infectivity and potential for airborne transmission and has become a global public health concern. In line with the European survey and previous phylogenetic studies, Switzerland shows the co-distribution of B.6 and B.12 strains with different geographical distribution and prevalence within the country. To establish itself in different host environments of ticks and mammals, F. tularensis presumably undergoes substantial changes on the transcriptomics and proteomic level. Here we investigate the transcriptomic and proteomic differences of five strains of Fth upon infection of rabbit macrophages and tick cells
    corecore