102 research outputs found

    Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts

    Get PDF
    Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid–host adaptations following transfer of a 73 kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli. We use experimental evolution, mathematical modelling and population sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions of costly regions from the plasmid backbone, effectively expanding the host-range of the plasmid. Although these adaptations were also beneficial to plasmid persistence in a naïve K. pneumoniae host, they were never observed in this species, indicating that differential evolvability can limit opportunities of plasmid adaptation. While insertion sequences are well known to supply plasmids with adaptive traits, our findings suggest that they also play an important role in plasmid evolution by maintaining the plasticity necessary to alleviate plasmid–host constrains. Further, the observed evolutionary strategy consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts

    Children Attending Day Care Centers are a Year-round Reservoir of Gastrointestinal Viruses

    Get PDF
    Abstract Viral gastroenteritis causes high morbidity worldwide. In this study, stool samples from 179 children aged 0–6 years attending Danish day care centers were investigated for gastrointestinal viruses. Each child was observed for one year with submission of samples and questionnaires every two months. Adenovirus, norovirus, rotavirus, and sapovirus were detected in samples using real-time PCR. A total of 229 (33%) of the 688 samples collected tested positive for at least one virus. At the first sampling point, adenovirus was shed by 6%, norovirus genotype I by 3% and genotype II by 12%, rotavirus A by 9%, and sapovirus by 21% of the 142 children included in the risk factor analyses. Increasing age was identified as a protective factor against testing positive for gastrointestinal virus, whereas nausea during the previous two months was positively associated with testing positive. Odds of shedding adenovirus were 9.6 times higher among children treated with antibiotics within the previous two months than among children who were not. Gastrointestinal viruses were shed year-round and high viral loads were observed in samples from both symptomatic and asymptomatic children, suggesting children in day care as a reservoir and a possible source of spreading of viruses into the community

    Evaluation of point-of-care multiplex polymerase chain reaction in guiding antibiotic treatment of patients acutely admitted with suspected community-acquired pneumonia in Denmark: A multicentre randomised controlled trial.

    Get PDF
    BackgroundRapid and accurate detection of pathogens is needed in community-acquired pneumonia (CAP) to enable appropriate antibiotics and to slow the development of antibiotic resistance. We aimed to compare the effect of point-of-care (POC) polymerase chain reaction (PCR) detection of respiratory pathogens added to standard care with standard care only (SCO) on antibiotic prescriptions after acute hospital admission.Methods and findingsWe performed a superiority, parallel-group, open-label, multicentre, randomised controlled trial (RCT) in 3 Danish medical emergency departments (EDs) from March 2021 to February 2022. Adults acutely admitted with suspected CAP during the daytime on weekdays were included and randomly assigned (1:1) to POC-PCR (The Biofire FilmArray Pneumonia Panel plus added to standard care) or SCO (routine culture and, if requested by the attending physician, target-specific PCR) analysis of respiratory samples. We randomly assigned 294 patients with successfully collected samples (tracheal secretion 78.4% or expectorated sputum 21.6%) to POC-PCR (n = 148, 50.4%) or SCO (146, 49.6%). Patients and investigators owning the data were blinded to the allocation and test results. Outcome adjudicators and clinical staff at the ED were not blinded to allocation and test results but were together with the statistician, blinded to data management and analysis. Laboratory staff performing standard care analyses was blinded to allocation. The study coordinator was not blinded. Intention-to-treat and per protocol analysis were performed using logistic regression with Huber-White clustered standard errors for the prescription of antibiotic treatment. Loss to follow-up comprises 3 patients in the POC-PCR (2%) and none in the SCO group. Intention-to-treat analysis showed no difference in the primary outcome of prescriptions of no or narrow-spectrum antibiotics at 4 h after admission for the POC-PCR (n = 91, 62.8%) odds ratio (OR) 1.13; (95% confidence interval (CI) [0.96, 1.34] p = 0.134) and SCO (n = 87, 59.6%). Secondary outcomes showed that prescriptions were significantly more targeted at 4-h OR 5.68; (95% CI [2.49, 12.94] p ConclusionsIn a setting with an already restrictive use of antibiotics, adding POC-PCR to the diagnostic setup did not increase the number of patients treated with narrow-spectrum or without antibiotics. POC-PCR may result in a more targeted and adequate use of antibiotics. A significant study limitation was the concurrent Coronavirus Disease 2019 (COVID-19) pandemic resulting in an unusually low transmission of respiratory virus.Trial registrationClinicalTrials.gov (NCT04651712)
    corecore