99 research outputs found
Single-shot carrier-envelope-phase measurement in ambient air
The ability to measure and control the carrier envelope phase (CEP) of
few-cycle laser pulses is of paramount importance for both frequency metrology
and attosecond science. Here, we present a phase meter relying on the
CEP-dependent photocurrents induced by circularly polarized few-cycle pulses
focused between electrodes in ambient air. The new device facilitates compact
single-shot, CEP measurements under ambient conditions and promises CEP tagging
at repetition rates orders of magnitude higher than most conventional CEP
detection schemes as well as straightforward implementation at longer
wavelengths
Low temperature dipolar echo in amorphous dielectrics: Significance of relaxation and decoherence free two level systems
The nature of dielectric echoes in amorphous solids at low temperatures is
investigated. It is shown that at long delay times the echo amplitude is
determined by a small subset of two level systems (TLS) having negligible
relaxation and decoherence because of their weak coupling to phonons. The echo
decay can then be described approximately by power law time dependencies with
different powers at times longer and shorter than the typical TLS relaxation
time. The theory is applied to recent measurements of two and three pulse
dipolar echo in borosilicate glass BK7 and provides a perfect data fit in the
broad time and temperature ranges under the assumption that there exist two TLS
relaxation mechanisms due to TLS-phonons and TLS-TLS interaction. This
interpretation is consistent with the previous experimental and theoretical
investigations. Further experiments verifying the theory predictions are
suggested.Comment: 10 pages, 8 figure
Attosecond physics at the nanoscale
Recently two emerging areas of research, attosecond and nanoscale physics, have started to come together. Attosecond physics deals with phenomena occurring when ultrashort laser pulses, with duration on the femto- and sub-femtosecond time scales, interact with atoms, molecules or solids. The laser-induced electron dynamics occurs natively on a timescale down to a few hundred or even tens of attoseconds, which is comparable with the optical field. On the other hand, the second branch involves the manipulation and engineering of mesoscopic systems, such as solids, metals and dielectrics, with nanometric precision. Although nano-engineering is a vast and well-established research field on its own, the merger with intense laser physics is relatively recent. In this article we present a comprehensive experimental and theoretical overview of physics that takes place when short and intense laser pulses interact with nanosystems, such as metallic and dielectric nanostructures. In particular we elucidate how the spatially inhomogeneous laser induced fields at a nanometer scale modify the laser-driven electron dynamics. Consequently, this has important impact on pivotal processes such as ATI and HHG. The deep understanding of the coupled dynamics between these spatially inhomogeneous fields and matter configures a promising way to new avenues of research and applications. Thanks to the maturity that attosecond physics has reached, together with the tremendous advance in material engineering and manipulation techniques, the age of atto-nano physics has begun, but it is in the initial stage. We present thus some of the open questions, challenges and prospects for experimental confirmation of theoretical predictions, as well as experiments aimed at characterizing the induced fields and the unique electron dynamics initiated by them with high temporal and spatial resolution
Metal-support interaction and charge distribution in ceria-supported Au particles exposed to CO
Understanding how reaction conditions affect metal-support interactions in catalytic materials is one of the most challenging tasks in heterogeneous catalysis research. Metal nanoparticles and their supports often undergo changes in structure and oxidation state when exposed to reactants, hindering a straightforward understanding of the structure-activity relations using only ex situ or ultrahigh vacuum techniques. Overcoming these limitations, we explored the metal-support interaction between gold nanoparticles and ceria supports in ultrahigh vacuum and after exposure to CO. A combination of in situ methods (on powder and model Au/CeO2 samples) and theoretical calculations was applied to investigate the gold/ceria interface and its reactivity toward CO exposure. X-ray photoelectron spectroscopy measurements rationalized by first-principles calculations reveal a distinctly inhomogeneous charge distribution, with Au+ atoms in contact with the ceria substrate and neutral Au0 atoms at the surface of the Au nanoparticles. Exposure to CO partially reduces the ceria substrate, leading to electron transfer to the supported Au nanoparticles. Transferred electrons can delocalize among the neutral Au atoms of the particle or contribute to forming inert Auδ− atoms near oxygen vacancies at the ceria surface. This charge redistribution is consistent with the evolution of the vibrational frequencies of CO adsorbed on Au particles obtained using diffuse reflectance infrared Fourier transform spectroscopy
Attosecond correlated electron dynamics at C<sub>60</sub> giant plasmon resonance
Fullerenes have unique physical and chemical properties that are associated with their delocalized conjugated electronic structure. Among them, there is a giant ultra-broadband - and therefore ultrafast - plasmon resonance, which for C60 is in the extreme-ultraviolet energy range. While this peculiar resonance has attracted considerable interest for the potential downscaling of nanoplasmonic applications such as sensing, drug delivery and photocatalysis at the atomic level, its electronic character has remained elusive. The ultrafast decay time of this collective excitation demands attosecond techniques for real-time access to the photoinduced dynamics. Here, we uncover the role of electron correlations in the giant plasmon resonance of C60 by employing attosecond photoemission chronoscopy. We find a characteristic photoemission delay of up to 200 attoseconds pertaining to the plasmon that is purely induced by coherent large-scale correlations. This result provides novel insight into the quantum nature of plasmonic resonances, and sets a benchmark for advancing nanoplasmonic applications
Inactivation of pollen and other effects of genome-plastome incompatibility in Oenothera
A series of strains of the homozygous species Oenothera grandiflora (characterized by the genome BB and plastome III) were combined with plastome IV from O. parviflora (BC-IV) by means of appropriate crosses. An incompatibility between genome B and plastome IV is expressed in the haplo- and diplophase: (1) B-IV pollen, though normally developed, is largely inactive. The extent of the inactivation varies between different strains and shows a seasonal fluctuation as determined by seed set in outcrossing and selfing experiments. (2) In most of the strains lethality of BB-IV embryos is the rule, leading to empty seeds. This can be ameliorated by including another plastome in the zygotes and developing embryos on account of the biparental plastid transmission in Oenothera. It can best be demonstrated in crosses with a seed parent having normal green plastids of plastome IV and mutated chlorophyll deficient plastids from a different plastome in the pollen parent, leading to variegated progeny as well as a remainder of empty seeds. (3) In about one-half of the strains the BB-IV plants exhibit a temporary bleaching of the virescens type. The incompatibily between genome B and plastome IV does not support the earlier assumption that plastome IV is the ancestor of plastomes II, III, and V. Instead, a precursor plastome is postulated from which plastomes II, III, and IV are descended. While plastome I can be derived from II, only plastome V can be descended from plastome IV.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41640/1/606_2004_Article_BF00984370.pd
Collective Motion of Cells Mediates Segregation and Pattern Formation in Co-Cultures
Pattern formation by segregation of cell types is an important process during embryonic development. We show that an experimentally yet unexplored mechanism based on collective motility of segregating cells enhances the effects of known pattern formation mechanisms such as differential adhesion, mechanochemical interactions or cell migration directed by morphogens. To study in vitro cell segregation we use time-lapse videomicroscopy and quantitative analysis of the main features of the motion of individual cells or groups. Our observations have been extensive, typically involving the investigation of the development of patterns containing up to 200,000 cells. By either comparing keratocyte types with different collective motility characteristics or increasing cells' directional persistence by the inhibition of Rac1 GTP-ase we demonstrate that enhanced collective cell motility results in faster cell segregation leading to the formation of more extensive patterns. The growth of the characteristic scale of patterns generally follows an algebraic scaling law with exponent values up to 0.74 in the presence of collective motion, compared to significantly smaller exponents in case of diffusive motion
How Linear Tension Converts to Curvature: Geometric Control of Bone Tissue Growth
This study investigated how substrate geometry influences in-vitro tissue formation at length scales much larger than a single cell. Two-millimetre thick hydroxyapatite plates containing circular pores and semi-circular channels of 0.5 mm radius, mimicking osteons and hemi-osteons respectively, were incubated with MC3T3-E1 cells for 4 weeks. The amount and shape of the tissue formed in the pores, as measured using phase contrast microscopy, depended on the substrate geometry. It was further demonstrated, using a simple geometric model, that the observed curvature-controlled growth can be derived from the assembly of tensile elements on a curved substrate. These tensile elements are cells anchored on distant points of the curved surface, thus creating an actin “chord” by generating tension between the adhesion sites. Such a chord model was used to link the shape of the substrate to cell organisation and tissue patterning. In a pore with a circular cross-section, tissue growth increases the average curvature of the surface, whereas a semi-circular channel tends to be flattened out. Thereby, a single mechanism could describe new tissue growth in both cortical and trabecular bone after resorption due to remodelling. These similarities between in-vitro and in-vivo patterns suggest geometry as an important signal for bone remodelling
- …