3 research outputs found

    Ultrathin AlScN for low-voltage driven ferroelectric-based devices

    Full text link
    Thickness scaling of ferroelectricity in AlScN is a determining factor for its potential application in neuromorphic computing and memory devices. In this letter, we report on ultrathin (10 nm) Al0.72Sc0.28N films that are ferroelectrically switchable at room temperature. All-epitaxial Al0.72Sc0.28N/Pt heterostructures are grown by magnetron sputtering onto GaN/sapphire substrates followed by an in situ Pt capping approach to avoid oxidation of the Al0.72Sc0.28N film surface. Structural characterization by X-ray diffraction and transmission electron microscopy reveals the established epitaxy. The thus obtained high-quality interfaces in combination with the in situ capping is expected to facilitate ferroelectric switching of AlScN in the ultrathin regime. The analysis of the relative permittivity and coercive field dependence on the Al0.72Sc0.28N film thicknesses in the range of 100 nm down to 10 nm indicates only moderate scaling effects, suggesting that the critical thickness for ferroelectricity is not yet approached. Furthermore, the deposited layer stack demonstrates the possibility of including ultrathin ferroelectric AlScN into all-epitaxial GaN-based devices using sputter deposition techniques. Thus, our work highlights the integration and scaling potential of all-epitaxial ultrathin AlScN offering high storage density paired with low voltage operation desired for state of the art ferroelectric memory devices

    In‐Grain Ferroelectric Switching in Sub‐5 nm Thin Al0.74Sc0.26N Films at 1 V

    No full text
    Abstract Analog switching in ferroelectric devices promises neuromorphic computing with the highest energy efficiency if limited device scalability can be overcome. To contribute to a solution, one reports on the ferroelectric switching characteristics of sub‐5 nm thin Al0.74Sc0.26N films grown on Pt/Ti/SiO2/Si and epitaxial Pt/GaN/sapphire templates by sputter‐deposition. In this context, the study focuses on the following major achievements compared to previously available wurtzite‐type ferroelectrics: 1) Record low switching voltages down to 1 V are achieved, which is in a range that can be supplied by standard on‐chip voltage sources. 2) Compared to the previously investigated deposition of ultrathin Al1−xScxN films on epitaxial templates, a significantly larger coercive field (Ec) to breakdown field ratio is observed for Al0.74Sc0.26N films grown on silicon substrates, the technologically most relevant substrate‐type. 3) The formation of true ferroelectric domains in wurtzite‐type materials is for the first time demonstrated on the atomic scale by scanning transmission electron microscopy (STEM) investigations of a sub‐5 nm thin partially switched film. The direct observation of inversion domain boundaries (IDB) within single nm‐sized grains supports the theory of a gradual domain‐wall driven switching process in wurtzite‐type ferroelectrics. Ultimately, this should enable the analog switching necessary for mimicking neuromorphic concepts also in highly scaled devices

    Swiss-wide multicentre evaluation and prediction of core outcomes in arthroscopic rotator cuff repair: protocol for the ARCR_Pred cohort study

    No full text
    Introduction In the field of arthroscopic rotator cuff repair (ARCR), reporting standards of published studies differ dramatically, notably concerning adverse events (AEs). In addition, prognostic studies are overall methodologically poor, based on small data sets and explore only limited numbers of influencing factors. We aim to develop prognostic models for individual ARCR patients, primarily for the patient-reported assessment of shoulder function (Oxford Shoulder Score (OSS)) and the occurrence of shoulder stiffness 6 months after surgery. We also aim to evaluate the use of a consensus core event set (CES) for AEs and validate a severity classification for these events, considering the patient’s perspective.Methods and analysis A cohort of 970 primary ARCR patients will be prospectively documented from several Swiss and German orthopaedic clinics up to 24 months postoperatively. Patient clinical examinations at 6 and 12 months will include shoulder range of motion and strength (Constant Score). Tendon repair integrity status will be assessed by ultrasound at 12 months. Patient-reported questionnaires at 6, 12 and 24 months will determine functional scores (subjective shoulder value, OSS), anxiety and depression scores, working status, sports activities, and quality of life (European Quality of Life 5 Dimensions 5 Level questionnaire). AEs will be documented according to a CES. Prognostic models will be developed using an internationally supported regression methodology. Multiple prognostic factors, including patient baseline demographics, psychological, socioeconomic and clinical factors, rotator cuff integrity, concomitant local findings, and (post)operative management factors, will be investigated.Ethics and dissemination This project contributes to the development of personalised risk predictions for supporting the surgical decision process in ARCR. The consensus CES may become an international reference for the reporting of complications in clinical studies and registries. Ethical approval was obtained on 1 April 2020 from the lead ethics committee (EKNZ, Basel, Switzerland; ID: 2019-02076). All participants will provide informed written consent before enrolment in the study.Trial registration number NCT04321005.Protocol version Version 2 (13 December 2019)
    corecore