1,011 research outputs found
Strong Pinning and Plastic Deformations of the Vortex Lattice
We investigate numerically the dynamically generated plastic deformations of
a 3D vortex lattice (VL) driven through a disorder potential with isolated,
strong pinning centers (point-like or extended along the field direction). We
find that the VL exhibits a very peculiar dynamical behavior in the plastic
flow regime, in particular, topological excitations consisting of three or four
entangled vortices are formed. We determine the critical current density
and the activation energy for depinning in the presence of a finite
density of strong pinning centers.Comment: 12 pages, TeX type, Postscript figure
Defining and controlling double quantum dots in single-walled carbon nanotubes
We report the experimental realization of double quantum dots in
single-walled carbon nanotubes. The device consists of a nanotube with source
and drain contact, and three additional top-gate electrodes in between. We show
that, by energizing these top-gates, it is possible to locally gate a nanotube,
to create a barrier, or to tune the chemical potential of a part of the
nanotube. At low temperatures we find (for three different devices) that in
certain ranges of top-gate voltages our device acts as a double quantum dot,
evidenced by the typical honeycomb charge stability pattern.Comment: 9 pages, 3 figure
Superconductivity enhanced conductance fluctuations in few layer graphene nanoribbons
We investigate the mesoscopic disorder induced rms conductance variance
in a few layer graphene nanoribbon (FGNR) contacted by two
superconducting (S) Ti/Al contacts. By sweeping the back-gate voltage, we
observe pronounced conductance fluctuations superimposed on a linear background
of the two terminal conductance G. The linear gate-voltage induced response can
be modeled by a set of inter-layer and intra-layer capacitances.
depends on temperature T and source-drain voltage .
increases with decreasing T and . When lowering , a
pronounced cross-over at a voltage corresponding to the superconducting energy
gap is observed. For |V_{sd}|\ltequiv \Delta the fluctuations are
markedly enhanced. Expressed in the conductance variance of one
graphene-superconducutor (G-S) interface, values of 0.58 e^2/h are obtained at
the base temperature of 230 mK. The conductance variance in the sub-gap region
are larger by up to a factor of 1.4-1.8 compared to the normal state. The
observed strong enhancement is due to phase coherent charge transfer caused by
Andreev reflection at the nanoribbon-superconductor interface.Comment: 15 pages, 5 figure
Zero-bias anomaly in disordered wires
We calculate the low-energy tunneling density of states of
an -channel disordered wire, taking into account the electron-electron
interaction non-perturbatively. The finite scattering rate results in
a crossover from the Luttinger liquid behavior at higher energies,
, to the exponential dependence at low energies, where
. At finite temperature , the tunneling
density of states depends on the energy through the dimensionless variable
. At the Fermi level .Comment: 5 pages, 1 figur
Performance of a Tungsten-Cerium Fluoride Sampling Calorimeter in High-Energy Electron Beam Tests
A prototype for a sampling calorimeter made out of cerium fluoride crystals
interleaved with tungsten plates, and read out by wavelength-shifting fibres,
has been exposed to beams of electrons with energies between 20 and 150 GeV,
produced by the CERN Super Proton Synchrotron accelerator complex. The
performance of the prototype is presented and compared to that of a Geant4
simulation of the apparatus. Particular emphasis is given to the response
uniformity across the channel front face, and to the prototype's energy
resolution.Comment: 6 pages, 6 figures, Submitted to NIM
Giga-Hertz quantized charge pumping in bottom gate defined InAs nanowire quantum dots
Semiconducting nanowires (NWs) are a versatile, highly tunable material
platform at the heart of many new developments in nanoscale and quantum
physics. Here, we demonstrate charge pumping, i.e., the controlled transport of
individual electrons through an InAs NW quantum dot (QD) device at frequencies
up to GHz. The QD is induced electrostatically in the NW by a series of
local bottom gates in a state of the art device geometry. A periodic modulation
of a single gate is enough to obtain a dc current proportional to the frequency
of the modulation. The dc bias, the modulation amplitude and the gate voltages
on the local gates can be used to control the number of charges conveyed per
cycle. Charge pumping in InAs NWs is relevant not only in metrology as a
current standard, but also opens up the opportunity to investigate a variety of
exotic states of matter, e.g. Majorana modes, by single electron spectroscopy
and correlation experiments.Comment: 21 page
Nanospintronics with carbon nanotubes
One of the actual challenges of spintronics is the realization of a
spin-transistor allowing to control spin transport through an electrostatic
gate. In this review, we report on different experiments which demonstrate a
gate control of spin transport in a carbon nanotube connected to ferromagnetic
leads. We also discuss some theoretical approaches which can be used to analyze
spin transport in these systems. We emphasize the roles of the gate-tunable
quasi-bound states inside the nanotube and the coherent spin-dependent
scattering at the interfaces between the nanotube and its ferromagnetic
contacts.Comment: 35 pages, 15 figures, some figures in gi
Spin effects in single electron tunneling
An important consequence of the discovery of giant magnetoresistance in
metallic magnetic multilayers is a broad interest in spin dependent effects in
electronic transport through magnetic nanostructures. An example of such
systems are tunnel junctions -- single-barrier planar junctions or more complex
ones. In this review we present and discuss recent theoretical results on
electron and spin transport through ferromagnetic mesoscopic junctions
including two or more barriers. Such systems are also called ferromagnetic
single-electron transistors. We start from the situation when the central part
of a device has the form of a magnetic (or nonmagnetic) metallic nanoparticle.
Transport characteristics reveal then single-electron charging effects,
including the Coulomb staircase, Coulomb blockade, and Coulomb oscillations.
Single-electron ferromagnetic transistors based on semiconductor quantum dots
and large molecules (especially carbon nanotubes) are also considered. The main
emphasis is placed on the spin effects due to spin-dependent tunnelling through
the barriers, which gives rise to spin accumulation and tunnel
magnetoresistance. Spin effects also occur in the current-voltage
characteristics, (differential) conductance, shot noise, and others. Transport
characteristics in the two limiting situations of weak and strong coupling are
of particular interest. In the former case we distinguish between the
sequential tunnelling and cotunneling regimes. In the strong coupling regime we
concentrate on the Kondo phenomenon, which in the case of transport through
quantum dots or molecules leads to an enhanced conductance and to a pronounced
zero-bias Kondo peak in the differential conductance.Comment: topical review (36 figures, 65 pages), to be published in J. Phys.:
Condens. Matte
Multi-particle effects in non-equilibrium electron tunnelling and field emission
We investigate energy resolved electric current from various correlated host
materials under out-of-equilibrium conditions. We find that, due to a combined
effect of electron-electron interactions, non-equilibrium and multi-particle
tunnelling, the energy resolved current is finite even above the Fermi edge of
the host material. In most cases, the current density possesses a singularity
at the Fermi level revealing novel manifestations of correlation effects in
electron tunnelling. By means of the Keldysh non-equilibrium technique, the
current density is calculated for one-dimensional interacting electron systems
and for two-dimensional systems, both in the pure limit and in the presence of
disorder. We then specialise to the field emission and provide a comprehensive
theoretical study of this effect in carbon nanotubes.Comment: 22 pages, 8 figures (eps files
Persistent currents in carbon nanotubes based rings
Persistent currents in rings constructed from carbon nanotubes are
investigated theoretically. After studying the contribution of finite
temperature or quenched disorder on covalent rings, the complexity due to the
bundle packing is addressed. The case of interacting nanotori and
self-interacting coiled nanotubes are analyzed in details in relation with
experiments.Comment: 7 sections, 9 figure
- âŠ