1,011 research outputs found

    Strong Pinning and Plastic Deformations of the Vortex Lattice

    Full text link
    We investigate numerically the dynamically generated plastic deformations of a 3D vortex lattice (VL) driven through a disorder potential with isolated, strong pinning centers (point-like or extended along the field direction). We find that the VL exhibits a very peculiar dynamical behavior in the plastic flow regime, in particular, topological excitations consisting of three or four entangled vortices are formed. We determine the critical current density jcj_c and the activation energy for depinning UcU_c in the presence of a finite density of strong pinning centers.Comment: 12 pages, TeX type, Postscript figure

    Defining and controlling double quantum dots in single-walled carbon nanotubes

    Full text link
    We report the experimental realization of double quantum dots in single-walled carbon nanotubes. The device consists of a nanotube with source and drain contact, and three additional top-gate electrodes in between. We show that, by energizing these top-gates, it is possible to locally gate a nanotube, to create a barrier, or to tune the chemical potential of a part of the nanotube. At low temperatures we find (for three different devices) that in certain ranges of top-gate voltages our device acts as a double quantum dot, evidenced by the typical honeycomb charge stability pattern.Comment: 9 pages, 3 figure

    Superconductivity enhanced conductance fluctuations in few layer graphene nanoribbons

    Full text link
    We investigate the mesoscopic disorder induced rms conductance variance ήG\delta G in a few layer graphene nanoribbon (FGNR) contacted by two superconducting (S) Ti/Al contacts. By sweeping the back-gate voltage, we observe pronounced conductance fluctuations superimposed on a linear background of the two terminal conductance G. The linear gate-voltage induced response can be modeled by a set of inter-layer and intra-layer capacitances. ήG\delta G depends on temperature T and source-drain voltage VsdV_{sd}. ήG\delta G increases with decreasing T and ∣Vsd∣|V_{sd}|. When lowering ∣Vsd∣|V_{sd}|, a pronounced cross-over at a voltage corresponding to the superconducting energy gap Δ\Delta is observed. For |V_{sd}|\ltequiv \Delta the fluctuations are markedly enhanced. Expressed in the conductance variance GGSG_{GS} of one graphene-superconducutor (G-S) interface, values of 0.58 e^2/h are obtained at the base temperature of 230 mK. The conductance variance in the sub-gap region are larger by up to a factor of 1.4-1.8 compared to the normal state. The observed strong enhancement is due to phase coherent charge transfer caused by Andreev reflection at the nanoribbon-superconductor interface.Comment: 15 pages, 5 figure

    Zero-bias anomaly in disordered wires

    Full text link
    We calculate the low-energy tunneling density of states Îœ(Ï”,T)\nu(\epsilon, T) of an NN-channel disordered wire, taking into account the electron-electron interaction non-perturbatively. The finite scattering rate 1/τ1/\tau results in a crossover from the Luttinger liquid behavior at higher energies, Μ∝ϔα\nu\propto\epsilon^\alpha, to the exponential dependence Îœ(Ï”,T=0)∝exp⁥(−ϔ∗/Ï”)\nu (\epsilon, T=0)\propto \exp{(-\epsilon^*/\epsilon)} at low energies, where ϔ∗∝1/(Nτ)\epsilon^*\propto 1/(N \tau). At finite temperature TT, the tunneling density of states depends on the energy through the dimensionless variable Ï”/ϔ∗T\epsilon/\sqrt{\epsilon^* T}. At the Fermi level Îœ(Ï”=0,T)∝exp⁥(−ϔ∗/T)\nu(\epsilon=0,T) \propto \exp (-\sqrt{\epsilon^*/T}).Comment: 5 pages, 1 figur

    Performance of a Tungsten-Cerium Fluoride Sampling Calorimeter in High-Energy Electron Beam Tests

    Full text link
    A prototype for a sampling calorimeter made out of cerium fluoride crystals interleaved with tungsten plates, and read out by wavelength-shifting fibres, has been exposed to beams of electrons with energies between 20 and 150 GeV, produced by the CERN Super Proton Synchrotron accelerator complex. The performance of the prototype is presented and compared to that of a Geant4 simulation of the apparatus. Particular emphasis is given to the response uniformity across the channel front face, and to the prototype's energy resolution.Comment: 6 pages, 6 figures, Submitted to NIM

    Giga-Hertz quantized charge pumping in bottom gate defined InAs nanowire quantum dots

    Get PDF
    Semiconducting nanowires (NWs) are a versatile, highly tunable material platform at the heart of many new developments in nanoscale and quantum physics. Here, we demonstrate charge pumping, i.e., the controlled transport of individual electrons through an InAs NW quantum dot (QD) device at frequencies up to 1.3 1.3\,GHz. The QD is induced electrostatically in the NW by a series of local bottom gates in a state of the art device geometry. A periodic modulation of a single gate is enough to obtain a dc current proportional to the frequency of the modulation. The dc bias, the modulation amplitude and the gate voltages on the local gates can be used to control the number of charges conveyed per cycle. Charge pumping in InAs NWs is relevant not only in metrology as a current standard, but also opens up the opportunity to investigate a variety of exotic states of matter, e.g. Majorana modes, by single electron spectroscopy and correlation experiments.Comment: 21 page

    Nanospintronics with carbon nanotubes

    Full text link
    One of the actual challenges of spintronics is the realization of a spin-transistor allowing to control spin transport through an electrostatic gate. In this review, we report on different experiments which demonstrate a gate control of spin transport in a carbon nanotube connected to ferromagnetic leads. We also discuss some theoretical approaches which can be used to analyze spin transport in these systems. We emphasize the roles of the gate-tunable quasi-bound states inside the nanotube and the coherent spin-dependent scattering at the interfaces between the nanotube and its ferromagnetic contacts.Comment: 35 pages, 15 figures, some figures in gi

    Spin effects in single electron tunneling

    Full text link
    An important consequence of the discovery of giant magnetoresistance in metallic magnetic multilayers is a broad interest in spin dependent effects in electronic transport through magnetic nanostructures. An example of such systems are tunnel junctions -- single-barrier planar junctions or more complex ones. In this review we present and discuss recent theoretical results on electron and spin transport through ferromagnetic mesoscopic junctions including two or more barriers. Such systems are also called ferromagnetic single-electron transistors. We start from the situation when the central part of a device has the form of a magnetic (or nonmagnetic) metallic nanoparticle. Transport characteristics reveal then single-electron charging effects, including the Coulomb staircase, Coulomb blockade, and Coulomb oscillations. Single-electron ferromagnetic transistors based on semiconductor quantum dots and large molecules (especially carbon nanotubes) are also considered. The main emphasis is placed on the spin effects due to spin-dependent tunnelling through the barriers, which gives rise to spin accumulation and tunnel magnetoresistance. Spin effects also occur in the current-voltage characteristics, (differential) conductance, shot noise, and others. Transport characteristics in the two limiting situations of weak and strong coupling are of particular interest. In the former case we distinguish between the sequential tunnelling and cotunneling regimes. In the strong coupling regime we concentrate on the Kondo phenomenon, which in the case of transport through quantum dots or molecules leads to an enhanced conductance and to a pronounced zero-bias Kondo peak in the differential conductance.Comment: topical review (36 figures, 65 pages), to be published in J. Phys.: Condens. Matte

    Multi-particle effects in non-equilibrium electron tunnelling and field emission

    Full text link
    We investigate energy resolved electric current from various correlated host materials under out-of-equilibrium conditions. We find that, due to a combined effect of electron-electron interactions, non-equilibrium and multi-particle tunnelling, the energy resolved current is finite even above the Fermi edge of the host material. In most cases, the current density possesses a singularity at the Fermi level revealing novel manifestations of correlation effects in electron tunnelling. By means of the Keldysh non-equilibrium technique, the current density is calculated for one-dimensional interacting electron systems and for two-dimensional systems, both in the pure limit and in the presence of disorder. We then specialise to the field emission and provide a comprehensive theoretical study of this effect in carbon nanotubes.Comment: 22 pages, 8 figures (eps files

    Persistent currents in carbon nanotubes based rings

    Get PDF
    Persistent currents in rings constructed from carbon nanotubes are investigated theoretically. After studying the contribution of finite temperature or quenched disorder on covalent rings, the complexity due to the bundle packing is addressed. The case of interacting nanotori and self-interacting coiled nanotubes are analyzed in details in relation with experiments.Comment: 7 sections, 9 figure
    • 

    corecore