468 research outputs found
Role of Self-Interaction Effects in the Geometry Optimization of Small Metal Clusters
By combining the Self-Interaction Correction (SIC) with pseudopotential
perturbation theory, the role of self-interaction errors inherent to the Local
Density Approximation (LDA) to Density Functional Theory is estimated in the
determination of ground state and low energy isomeric structures of small
metallic clusters. Its application to neutral sodium clusters with 8 and 20
atoms shows that the SIC provides sizeable effects in Na_8, leading to a
different ordering of the low lying isomeric states compared with ab-initio LDA
predictions, whereas for Na_20, the SIC effects are less pronounced, such that
a quantitative agreement is achieved between the present method and ab-initio
LDA calculations.Comment: RevTeX, 4 pages, 1 figure available from [email protected]
Calculated lifetimes of hot electrons in aluminum and copper using a plane-wave basis set
We report about the lifetimes of hot electrons in crystalline aluminum and copper. For aluminum the results agree quantitatively with the experimental results. For copper we get good agreement for quasiparticle energies in the (110) direction above 2 eV which shows that the lifetimes for quasiparticle states above 2 eV are determined by sp bands, explaining the puzzling fact that simple Fermi liquid theory describes Cu in this direction quite well. The calculations were performed within the shielded interaction approximation using a plane-wave basis expansion for the wave functions. We show that for Cu this basis leads to equally good results as the more demanding linearized augmented plane-wave basis
Ab initio simulations of liquid systems: Concentration dependence of the electric conductivity of NaSn alloys
Liquid NaSn alloys in five different compositions (20, 40, 50, 57 and 80%
sodium) are studied using density functional calculations combined with
molecular dynamics(Car-Parrinello method). The frequency-dependent electric
conductivities for the systems are calculated by means of the Kubo-Greenwood
formula.
The extrapolated DC conductivities are in good agreement with the
experimental data and reproduce the strong variation with the concentration.
The maximum of conductivity is obtained, in agreement with experiment, near the
equimolar composition.
The strong variation of conductivity, ranging from almost semiconducting up
to metallic behaviour, can be understood by an analysis of the
densities-of-states.Comment: LaTex 6 pages and 2 figures, to appear in J.Phys. Cond. Ma
Time-dependent screening of a positive charge distribution in metals: Excitons on an ultra-short time scale
Experiments determining the lifetime of excited electrons in crystalline
copper reveal states which cannot be interpreted as Bloch states [S. Ogawa {\it
et al.}, Phys. Rev. B {\bf 55}, 10869 (1997)]. In this article we propose a
model which explains these states as transient excitonic states in metals. The
physical background of transient excitons is the finite time a system needs to
react to an external perturbation, in other words, the time which is needed to
build up a polarization cloud. This process can be probed with modern
ultra-short laser pulses. We calculate the time-dependent density-response
function within the jellium model and for real Cu. From this knowledge it is
possible within linear response theory to calculate the time needed to screen a
positive charge distribution and -- on top of this -- to determine excitonic
binding energies. Our results lead to the interpretation of the experimentally
detected states as transient excitonic states.Comment: 24 pages, 9 figures, to appear in Phys. Rev. B, Nov. 15, 2000, issue
2
GPS water level measurements for Indonesia's Tsunami Early Warning System
On Boxing Day 2004, a severe tsunami was generated by a strong earthquake in Northern Sumatra causing a large number of casualties. At this time, neither an offshore buoy network was in place to measure tsunami waves, nor a system to disseminate tsunami warnings to local governmental entities. Since then, buoys have been developed by Indonesia and Germany, complemented by NOAA's Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys, and have been moored offshore Sumatra and Java. The suite of sensors for offshore tsunami detection in Indonesia has been advanced by adding GPS technology for water level measurements. <br><br> The usage of GPS buoys in tsunami warning systems is a relatively new approach. The concept of the German Indonesian Tsunami Early Warning System (GITEWS) (Rudloff et al., 2009) combines GPS technology and ocean bottom pressure (OBP) measurements. Especially for near-field installations where the seismic noise may deteriorate the OBP data, GPS-derived sea level heights provide additional information. <br><br> The GPS buoy technology is precise enough to detect medium to large tsunamis of amplitudes larger than 10 cm. The analysis presented here suggests that for about 68% of the time, tsunamis larger than 5 cm may be detectable
Two centuries of southwest Iceland annually-resolved marine temperature reconstructed from Arctica islandica shells
Iceland's exposure to major ocean current pathways of the central North Atlantic makes it a useful location for developing long-term proxy records of past marine climate. Such records provide more detailed understanding of the full range of past variability which is necessary to improve predictions of future changes. We constructed a 225-year (1791–2015 CE) master shell growth chronology from 29 shells of Arctica islandica collected at 100 m water depth in southwest Iceland (Faxaflói). The growth chronology provides a robust age model for shell oxygen isotope (δ18Oshell) data produced at annual resolution for 251 years (1765–2015 CE). The temperature reconstruction derived from δ18Oshell shows coherence with May–October local surface temperature records and sea surface temperatures in the North Atlantic region, suggesting it is a useful proxy indicator of water temperature variability at 100 m depth within Faxaflói. Field correlations between the shell-based records and gridded sea surface temperature data reveal strong positive correlations between the 1-year lagged shell growth and temperatures within the subpolar gyre post-1972, suggesting a delayed influence of subpolar gyre dynamics on ecological indicators in southwest Iceland in recent decades. However, the shell growth chronology and δ18Oshell record generally show relatively weak and insignificant correlations with larger region climate indices including the Atlantic Multidecadal Variability, North Atlantic Oscillation, and East Atlantic pattern. Therefore the interannual variations in the newly produced shell-based records appear to reflect more local to regional dynamics around southwest Iceland than large-scale modes of climate variability.publishedVersio
Hippocampal volume in patients with bilateral and unilateral peripheral vestibular dysfunction.
Previous studies have found that peripheral vestibular dysfunction is associated with altered volumes in different brain structures, especially in the hippocampus. However, published evidence is conflicting. Based on previous findings, we compared hippocampal volume, as well as supramarginal, superior temporal, and postcentral gyrus in a sample of 55 patients with different conditions of peripheral vestibular dysfunction (bilateral, chronic unilateral, acute unilateral) to 39 age- and sex-matched healthy controls. In addition, we explored deviations in gray-matter volumes in hippocampal subfields. We also analysed correlations between morphometric data and visuo-spatial performance. Patients with vestibular dysfunction did not differ in total hippocampal volume from healthy controls. However, a reduced volume in the right presubiculum of the hippocampus and the left supramarginal gyrus was observed in patients with chronic and acute unilateral vestibular dysfunction, but not in patients with bilateral vestibular dysfunction. No association of altered volumes with visuo-spatial performance was found. An asymmetric vestibular input due to unilateral vestibular dysfunction might lead to reduced central brain volumes that are involved in vestibular processing
Hydrographic Changes in Nares Strait (Canadian Arctic Archipelago) in Recent Decades Based on δ18O Profiles of Bivalve Shells
Nares Strait is one of three main passages of the Canadian Archipelago that channel relatively fresh seawater from the Arctic Ocean through Baffin Bay to the Labrador Sea. Oxygen isotopic profiles along the growth axis of bivalve shells, collected live over the 5 – 30 m depth range from the Greenland and Ellesmere Island sides of the strait, were used to reconstruct changes in the hydrography of the region over the past century. The variability in oxygen isotope ratios is mainly attributed to variations in salinity and suggests that the northern end of Nares Strait has been experiencing an increase in freshwater runoff since the mid 1980s. The recent changes are most pronounced at the northern end of the strait and diminish toward the south, a pattern consistent with proximity to the apparently freshening Arctic Ocean source in the north and mixing with Baffin Bay waters as the water progresses southward. This increasing freshwater signal may reflect changes in circulation and ice formation that favor an increased flow of relatively fresh waters from the Arctic Ocean into Nares Strait.Le détroit de Nares est l’un des trois principaux passages de l’archipel canadien qui canalise de l’eau de mer relativement fraîche de l’océan Arctique jusqu’à la mer du Labrador en passant par la baie de Baffin. Les profils de la composition isotopique de l’oxygène le long de l’axe de développement des coquillages bivalves recueillis en vie à une profondeur variant entre 5 à 30 m des côtés du détroit à la hauteur du Groenland et de l’île d’Ellesmere ont servi à reconstruire les changements ayant caractérisé l’hydrographie de la région au cours du dernier siècle. La variabilité en matière de ratio d’isotope de l’oxygène est principalement attribuable aux variations de salinité, ce qui laisse entendre que l’extrémité nord du détroit de Nares connaît une augmentation de l’écoulement d’eau douce depuis le milieu des années 1980. Les changements récents sont plus prononcés à l’extrémité nord du détroit et diminuent en arrivant vers le sud, ce qui constitue une tendance conforme à la proximité de la source de l’océan Arctique en dessalure apparente dans le nord et qui se mélange avec les eaux de la baie de Baffin au fur et à mesure que l’eau progresse vers le sud. Cette augmentation de la présence d’eau douce peut être le reflet de changements en matière de circulation et de formation de la glace qui favorisent un écoulement accru d’eaux relativement douces en provenance de l’océan Arctique et se jettent dans le détroit de Nares
- …