56 research outputs found

    Double-plating of ovine critical sized defects of the tibia: a low morbidity model enabling continuous in vivo monitoring of bone healing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies using sheep critical sized defect models to test tissue engineered products report high morbidity and complications rates. This study evaluates a large bone defect model in the sheep tibia, stabilized with two, a novel Carbon fibre Poly-ether-ether-ketone (CF-PEEK) and a locking compression plate (LCP) which could sustain duration for up to 6 month with an acceptable low complication rate.</p> <p>Methods</p> <p>A large bone defect of 3 cm was performed in the mid diaphysis of the right tibia in 33 sheep. The defect was stabilised with the CF - PEEK plate and an LCP. All sheep were supported with slings for 8 weeks after surgery. The study was carried out for 3 months in 6 and for 6 months in 27 animals.</p> <p>Results</p> <p>The surgical procedure could easily be performed in all sheep and continuous in vivo radiographic evaluation of the defect was possible. This long bone critical sized defect model shows with 6.1% a low rate of complications compared with numbers mentioned in the literature.</p> <p>Conclusions</p> <p>This experimental animal model could serve as a standard model in comparative research. A well defined standard model would reduce the number of experimental animals needed in future studies and would therefore add to ethical considerations.</p

    Green Fluorescent Protein (GFP) Color Reporter Gene Visualizes Parvovirus B19 Non-Structural Segment 1 (NS1) Transfected Endothelial Modification

    Get PDF
    Background: Human Parvovirus B19 (PVB19) has been associated with myocarditis putative due to endothelial infection. Whether PVB19 infects endothelial cells and causes a modification of endothelial function and inflammation and, thus, disturbance of microcirculation has not been elucidated and could not be visualized so far. Methods and Findings: To examine the PVB19-induced endothelial modification, we used green fluorescent protein (GFP) color reporter gene in the non-structural segment 1 (NS1) of PVB19. NS1-GFP-PVB19 or GFP plasmid as control were transfected in an endothelial-like cell line (ECV304). The endothelial surface expression of intercellular-adhesion molecule-1 (CD54/ICAM-1) and extracellular matrix metalloproteinase inducer (EMMPRIN/CD147) were evaluated by flow cytometry after NS-1-GFP or control-GFP transfection. To evaluate platelet adhesion on NS-1 transfected ECs, we performed a dynamic adhesion assay (flow chamber). NS-1 transfection causes endothelial activation and enhanced expression of ICAM-1 (CD54: mean±standard deviation: NS1-GFP vs. control-GFP: 85.3±11.2 vs. 61.6±8.1; P<0.05) and induces endothelial expression of EMMPRIN/CD147 (CD147: mean±SEM: NS1-GFP vs. control-GFP: 114±15.3 vs. 80±0.91; P<0.05) compared to control-GFP transfected cells. Dynamic adhesion assays showed that adhesion of platelets is significantly enhanced on NS1 transfected ECs when compared to control-GFP (P<0.05). The transfection of ECs was verified simultaneously through flow cytometry, immunofluorescence microscopy and polymerase chain reaction (PCR) analysis. Conclusions: GFP color reporter gene shows transfection of ECs and may help to visualize NS1-PVB19 induced endothelial activation and platelet adhesion as well as an enhanced monocyte adhesion directly, providing in vitro evidence of possible microcirculatory dysfunction in PVB19-induced myocarditis and, thus, myocardial tissue damage
    • …
    corecore