238 research outputs found
Initial stage of the 2D-3D transition of a strained SiGe layer on a pit-patterned Si(001) template
We investigate the initial stage of the 2D-3D transition of strained Ge
layers deposited on pit-patterned Si(001) templates. Within the pits, which
assume the shape of inverted, truncated pyramids after optimized growth of a Si
buffer layer, the Ge wetting layer develops a complex morphology consisting
exclusively of {105} and (001) facets. These results are attributed to a
strain-driven step-meandering instability on the facetted side-walls of the
pits, and a step-bunching instability at the sharp concave intersections of
these facets. Although both instabilities are strain-driven, their coexistence
becomes mainly possible by the geometrical restrictions in the pits. It is
shown that the morphological transformation of the pit surface into low-energy
facets has strong influence on the preferential nucleation of Ge islands at the
flat bottom of the pits.Comment: 19 pages, 7 figure
Valley splitting of Si/SiGe heterostructures in tilted magnetic fields
We have investigated the valley splitting of two-dimensional electrons in
high quality Si/SiGe heterostructures under tilted magnetic fields.
For all the samples in our study, the valley splitting at filling factor
() is significantly different before and after the
coincidence angle, at which energy levels cross at the Fermi level. On both
sides of the coincidence, a linear density dependence of on the
electron density was observed, while the slope of these two configurations
differs by more than a factor of two. We argue that screening of the Coulomb
interaction from the low-lying filled levels, which also explains the observed
spin-dependent resistivity, is responsible for the large difference of
before and after the coincidence.Comment: REVTEX 4 pages, 4 figure
Experimental evidence for the formation of stripe phases in Si/SiGe
We observe pronounced transport anisotropies in magneto-transport experiments
performed in the two-dimensional electron system of a Si/SiGe heterostructure.
They occur when an in-plane field is used to tune two Landau levels with
opposite spin to energetic coincidence. The observed anisotropies disappear
drastically for temperatures above 1 K. We propose that our experimental
findings may be caused by the formation of a unidirectional stripe phase
oriented perpendicular to the in-plane field.Comment: 4 pages, 3 figure
Transient-Enhanced Surface Diffusion on Natural-Oxide-Covered Si(001) Templates during Vacuum Annealing
We report on the transient-enhanced shape transformation of nano-structured Si(001) surfaces upon in vacuo annealing at relatively low temperatures of 900 -950 °C for a few minutes. We find dramatic surface mass transport concomitant with the development of low-energy facets on surfaces that are covered by native oxide. The enhanced surface mass transport ceases after the oxide is completely desorbed, and it is not observed on surfaces where the native oxide had been removed by HF before annealing
Efficient room-temperature light-emitters based on partly amorphised Ge quantum dots in crystalline Si
Semiconductor light emitters compatible with standard Si integration
technology (SIT) are of particular interest for overcoming limitations in the
operating speed of microelectronic devices 1-3. Light sources based on group-IV
elements would be SIT compatible but suffer from the poor optoelectronic
properties of bulk Si and Ge. Here, we demonstrate that epitaxially grown Ge
quantum dots (QDs) in a fully coherent Si matrix show extraordinary optical
properties if partially amorphised by Ge-ion bombardment (GIB). The GIB-QDs
exhibit a quasi-direct-band gap and show, in contrast to conventional SiGe
nanostructures, almost no thermal quenching of the photoluminescence (PL) up to
room-temperature (RT). Microdisk resonators with embedded GIB-QDs exhibit
threshold-behaviour and super-linear increase of the integrated PL-intensity
(IPL) with increasing excitation power Pexc which indicates light amplification
by stimulated emission in a fully SIT-compatible group-IV nano-system
Centrosymmetric PbTe/CdTe quantum dots coherently embedded by epitaxial precipitation
A concept for the fabrication of highly symmetric quantum dots that are
coherently embedded in a single crystalline matrix is demonstrated. In this
approach, the formation of the quantum dots is induced by a transformation of
an epitaxial 2D quantum well into an array of isolated precipitates with
dimensions of about 25 nm. The formation process is driven by the immiscibility
of the constituent materials resulting from their different lattice structures.
The investigated PbTe/CdTe heterosystem combines two different cubic lattices
with almost identical lattice constants. Therefore, the precipitated quantum
dots are almost strain free and near thermodynamic equilibrium they exhibit the
shape of small-rhombo-cubo-octahedrons. The PbTe/CdTe quantum dots, grown on
GaAs substrates, display intense room temperature luminescence at wavelength
around 3.2 micrometer, which makes them auspicious for applications in
mid-infrared photonic devices.Comment: 12 pages, 3 figure
The Society for Microelectronics -Annual Report 2003 Spin Relaxation in Si Quantum Wells Suppressed by an Applied Magnetic Field
We investigate spin properties of the two-dimensional electron gas in Si quantum wells defined by SiGe barriers. We find, in contrast to predictions of the classical model of D'yakonov-Perel, a strong anisotropy of spin relaxation and a decrease of the spin relaxation rate with increasing electron mobility. We show that for high electron mobility the cyclotron motion causes an additional modulation of spin-orbit coupling which leads to an effective suppression of spin relaxation rate. In spintronics, the aim is to make use of the spin degrees of freedom in addition to the electronic ones. Therefore, spintronic devices based on spins of carriers in semiconductors appear particularly promising. In such elements carriers can be easily moved by applying external voltages, the well known tool of classical electronics. The utilization of spin properties, however, usually is limited by the fast spin relaxation of conduction electrons. Therefore analysis of the spin relaxation mechanisms and the search for a suitable material and optimum conditions are of primary interest in this field. In III-V compounds the spin relaxation time is below one nanosecond [1]. Silicon based devices, due to much weaker spin-orbit coupling, appear much more promising. 2D Si layers in Si/SiGe structures exhibit a spin relaxation time of the order of a few microseconds by measurements of electron spin resonance (ESR) [2] - The effect of BR coupling on spin, σ, of a conduction electron can be described by an effective magnetic field, B BR . This field is oriented in-plane and perpendicular to electron momentum, ħk. The resulting zero field splitting is given by: The direction of the BR field depends on the direction of electron k-vector, and therefore the spread of k-vectors results in a spread of the BR field. Consequently, the ESR resonance is shifted and broadened. Momentum scattering, described by a rate 1/τ k , causes a modulation of the BR field in time which leads to the so called D'yakonovPerel (DP) spin relaxatio
Screening Breakdown on the Route toward the Metal-Insulator Transition in Modulation Doped Si/SiGe Quantum Wells
Exploiting the spin resonance of two-dimensional (2D) electrons in SiGe/Si
quantum wells we determine the carrier-density-dependence of the magnetic
susceptibility. Assuming weak interaction we evaluate the density of states at
the Fermi level D(E_F), and the screening wave vector, q_TF. Both are constant
at higher carrier densities n, as for an ideal 2D carrier gas. For n < 3e11
cm-2, they decrease and extrapolate to zero at n = 7e10 cm-2. Calculating the
mobility from q_TF yields good agreement with experimental values justifying
the approach. The decrease in D(E_F) is explained by potential fluctuations
which lead to tail states that make screening less efficient and - in a
positive feedback - cause an increase of the potential fluctuations. Even in
our high mobility samples the fluctuations exceed the electron-electron
interaction leading to the formation of puddles of mobile carriers with at
least 1 micrometer diameter.Comment: 4 pages, 3 figure
Decoherence of electron spin qubits in Si-based quantum computers
Direct phonon spin-lattice relaxation of an electron qubit bound by a donor
impurity or quantum dot in SiGe heterostructures is investigated. The aim is to
evaluate the importance of decoherence from this mechanism in several important
solid-state quantum computer designs operating at low temperatures. We
calculate the relaxation rate as a function of [100] uniaxial strain,
temperature, magnetic field, and silicon/germanium content for Si:P bound
electrons. The quantum dot potential is much smoother, leading to smaller
splittings of the valley degeneracies. We have estimated these splittings in
order to obtain upper bounds for the relaxation rate. In general, we find that
the relaxation rate is strongly decreased by uniaxial compressive strain in a
SiGe-Si-SiGe quantum well, making this strain an important positive design
feature. Ge in high concentrations (particularly over 85%) increases the rate,
making Si-rich materials preferable. We conclude that SiGe bound electron
qubits must meet certain conditions to minimize decoherence but that
spin-phonon relaxation does not rule out the solid-state implementation of
error-tolerant quantum computing.Comment: 8 figures. To appear in PRB-July 2002. Revisions include: some
references added/corrected, several typos fixed, a few things clarified.
Nothing dramati
- …