18 research outputs found
Nonperturbative Effects in Gluon Radiation and Photoproduction of Quark Pairs
We introduce a nonperturbative interaction for light-cone fluctuations
containing quarks and gluons. The interaction squeezes the transverse
size of these fluctuations in the photon and one does not need to simulate this
effect via effective quark masses. The strength of this interaction is fixed by
data. Data on diffractive dissociation of hadrons and photons show that the
nonperturbative interaction of gluons is much stronger. We fix the parameters
for the nonperturbative quark-gluon interaction by data for diffractive
dissociation to large masses (triple-Pomeron regime). This allows us to predict
nuclear shadowing for gluons which turns out to be not as strong as
perturbative QCD predicts. We expect a delayed onset of gluon shadowing at shadowing of quarks. Gluon shadowing turns out to be nearly scale
invariant up to virtualities due to presence of a semihard
scale characterizing the strong nonperturbative interaction of gluons. We use
the same concept to improve our description of gluon bremsstrahlung which is
related to the distribution function for a quark-gluon fluctuation and the
interaction cross section of a fluctuation with a nucleon. We expect
the nonperturbative interaction to suppress dramatically the gluon radiation at
small transverse momenta compared to perturbative calculations.Comment: 58 pages of Latex including 11 figures. Shadowing for soft gluons and
Fig. 6 are added as well as a few reference
On the origin of biochemistry at an alkaline hydrothermal vent
A model for the origin of biochemistry at an alkaline hydrothermal vent has been developed that focuses on the acetyl-CoA (Wood–Ljungdahl) pathway of CO2 fixation and central intermediary metabolism leading to the synthesis of the constituents of purines and pyrimidines. The idea that acetogenesis and methanogenesis were the ancestral forms of energy metabolism among the first free-living eubacteria and archaebacteria, respectively, stands in the foreground. The synthesis of formyl pterins, which are essential intermediates of the Wood–Ljungdahl pathway and purine biosynthesis, is found to confront early metabolic systems with steep bioenergetic demands that would appear to link some, but not all, steps of CO2 reduction to geochemical processes in or on the Earth's crust. Inorganically catalysed prebiotic analogues of the core biochemical reactions involved in pterin-dependent methyl synthesis of the modern acetyl-CoA pathway are considered. The following compounds appear as probable candidates for central involvement in prebiotic chemistry: metal sulphides, formate, carbon monoxide, methyl sulphide, acetate, formyl phosphate, carboxy phosphate, carbamate, carbamoyl phosphate, acetyl thioesters, acetyl phosphate, possibly carbonyl sulphide and eventually pterins. Carbon might have entered early metabolism via reactions hardly different from those in the modern Wood–Ljungdahl pathway, the pyruvate synthase reaction and the incomplete reverse citric acid cycle. The key energy-rich intermediates were perhaps acetyl thioesters, with acetyl phosphate possibly serving as the universal metabolic energy currency prior to the origin of genes. Nitrogen might have entered metabolism as geochemical NH3 via two routes: the synthesis of carbamoyl phosphate and reductive transaminations of α-keto acids. Together with intermediates of methyl synthesis, these two routes of nitrogen assimilation would directly supply all intermediates of modern purine and pyrimidine biosynthesis. Thermodynamic considerations related to formyl pterin synthesis suggest that the ability to harness a naturally pre-existing proton gradient at the vent–ocean interface via an ATPase is older than the ability to generate a proton gradient with chemistry that is specified by genes