1,056 research outputs found
Dimension reduction by balanced truncation: Application to light-induced control of open quantum systems
In linear control, balanced truncation is known as a powerful technique to reduce the state-space dimension
of a system. Its basic principle is to identify a subspace of jointly easily controllable and observable states
and then to restrict the dynamics to this subspace without changing the overall response of the system. This
work deals with a first application of balanced truncation to the control of open quantum systems which are
modeled by the Liouville-von Neumann equation within the Lindblad formalism. Generalization of the linear
theory have been proposed to cope with the bilinear terms arising from the coupling between the control field
and the quantum system. As an example we choose the dissipative quantum dynamics of a particle in an
asymmetric double well potential driven by an external control field, monitoring population transfer between
the potential wells as a control target. The accuracy of dimension reduction is investigated by comparing
the populations obtained for the truncated system versus those for the original system. The dimension of
the model system can be reduced very efficiently where the degree of reduction depends on temperature and
relaxation rate
Aluminum Hard Mask Technique for the Fabrication of High-Quality Submicron Nb/Al-AlOx/Nb Josephson Junctions
We have developed a combined photolithography and electron-beam lithography
fabrication process for sub-\mum to \mum-size Nb/Al-AlOx/Nb Josephson
junctions. In order to define the junction size and protect its top electrode
during anodic oxidation, we developed and used the new concept of an aluminum
hard mask. Josephson junctions of sizes down to 0.5 \mum2 have been fabricated
and thoroughly characterized. We found that they have a very high quality,
which is witnessed by the IV curves with quality parameters Vm > 50 mV and Vgap
= 2.8 mV at 4.2 K, as well as IcRN products of 1.75-1.93 mV obtained at lower
temperatures. In order to test the usability of our fabrication process for
superconducting quantum bits, we have also designed, fabricated and
experimentally investigated phase qubits made of these junctions. We found a
relaxation time of T1 = 26 ns and a dephasing time of T2 = 21 ns
Energy demand and efficiency measures in polymer processing: comparison between temperate and Mediterranean operating plants
Polymer processing is an energy-intensive industry. The plastification of polymers requires a high volume of electric power for thermal energy. Electricity based power is the common form of energy in polymer processing and provides obvious potential for a reduction in energy use and costs. Measures to avoid production-based conversion losses, total conversion and transportation losses in energy used all have social, national, economic and business relevance. A bottom-up evaluation of four different production factories in this study assesses the potential for energy use improvements. The resulting theoretical assessment suggested that reducing primary energy demand is the most powerful target for reducing energy intensity in the polymer industry followed by the introduction of improved technologies to raise energy efficiency. The transferability of the conclusions was supported by the comparison between two different geographic locations for polymer production in Germany and Western Australia. The findings of this research suggest potential in their use in ‘green’ decision-making in the plastics industry
NN interaction in a Goldstone boson exchange model
Adiabatic nucleon-nucleon potentials are calculated in a six-quark
nonrelativistic chiral constituent quark model where the Hamiltonian contains a
linear confinement and a pseudoscalar meson (Goldstone boson) exchange
interaction between quarks. Calculations are performed both in a cluster model
and a molecular orbital basis, through coupled channels. In both cases the
potentials present an important hard core at short distances, explained through
the dominance of the [51]_{FS} configuration, but do not exhibit an attractive
pocket. We add a scalar meson exchange interaction and show how it can account
for some middle-range attraction.Comment: 32 pages with 12 eps figures incorporated, RevTeX. Final version
published in PR
Three-Dimensional Imaging of Magnetic Domains with Neutron Grating Interferometry
This paper gives a brief overview on3D imaging of magnetic domains with shearing grating neutron tomography. We investigated the three-dimensional distribution of magnetic domain walls in the bulk of a wedge-shaped FeSi single crystal. The width of the magnetic domains wasanalyzed at different locations within the crystal. Magnetic domains close to the tip of the wedge are much smaller than in the bulk. Furthermore, the three-dimensional shape of individual domains wasinvestigated. We discuss prospects and limitations of the applied measurement technique
Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.
Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells
Phenomenology of the Lense-Thirring effect in the Solar System
Recent years have seen increasing efforts to directly measure some aspects of
the general relativistic gravitomagnetic interaction in several astronomical
scenarios in the solar system. After briefly overviewing the concept of
gravitomagnetism from a theoretical point of view, we review the performed or
proposed attempts to detect the Lense-Thirring effect affecting the orbital
motions of natural and artificial bodies in the gravitational fields of the
Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of
the impact of several sources of systematic uncertainties of dynamical origin
to realistically elucidate the present and future perspectives in directly
measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in
Astrophysics and Space Science (ApSS). Some uncited references in the text
now correctly quoted. One reference added. A footnote adde
- …