13,965 research outputs found

    Binary spinning black hole Hamiltonian in canonical center-of-mass and rest-frame coordinates through higher post-Newtonian order

    Full text link
    The recently constructed Hamiltonians for spinless binary black holes through third post-Newtonian order and for spinning ones through formal second post-Newtonian order, where the spins are counted of zero post-Newtonian order, are transformed into fully canonical center-of-mass and rest-frame variables. The mixture terms in the Hamiltonians between center-of-mass and rest-frame variables are in accordance with the relation between the total linear momentum and the center-of-mass velocity as demanded by global Lorentz invariance. The various generating functions for the center-of-mass and rest-frame canonical variables are explicitly given in terms of the single-particle canonical variables. The no-interaction theorem does not apply because the world-line condition of Lorentz covariant position variables is not imposed.Comment: 18 pages, no figure

    Higgs boson production in high energy proton-nucleus collisions

    Full text link
    We study Higgs boson production from gluon-gluon fusion at mid-rapidity in high energy proton-nucleus collisions. For this process the presently still little known gluon distribution function h1⊥gh_1^{\perp g} gives a numerically relevant contribution. We show by explicite calculation that using CGC (color glass condensate) model input the result obtained in the naive k_t factorization approach matches the result obtained in the TMD factorization framework for a dilute medium. We also verify the earlier finding that the k_t factorization formalism for Higgs production breaks down in a dense medium. In doing so we formulate a hybrid model which allows one to treat such reactions theoretically.Comment: a few more references added, vision

    On the Stability of Λ(1405)\Lambda(1405) Matter

    Full text link
    A hypothesis of absolutely stable strange hadronic matter composed of Λ(1405)\Lambda(1405) baryons, here denoted Λ∗\Lambda^*, is tested within many-body calculations performed using the Relativistic Mean-Field approach. In our calculations, we employed the Λ∗Λ∗\Lambda^*\Lambda^* interaction compatible with the Λ∗Λ∗\Lambda^*\Lambda^* binding energy BΛ∗Λ∗=40B_{\Lambda^*\Lambda^*}=40~MeV given by the phenomenological energy-independent KˉN\bar{K}N interaction model by Yamazaki and Akaishi (YA). We found that the binding energy per Λ∗\Lambda^*, as well as the central density in Λ∗\Lambda^* many-body systems saturates for mass number A≥120A\geq120, leaving Λ∗\Lambda^* aggregates highly unstable against strong interaction decay. Moreover, we confronted the YA interaction model with kaonic atom data and found that it fails to reproduce the K−K^- single-nucleon absorption fractions at rest from bubble chamber experiments.Comment: Proceedings of the HYP2018 conference, Norfolk/Portsmouth, USA, June 24 - 29, 2018, submitted to AIP Conference Proceeding

    Lattice QCD study of the Boer-Mulders effect in a pion

    Get PDF
    The three-dimensional momenta of quarks inside a hadron are encoded in transverse momentum-dependent parton distribution functions (TMDs). This work presents an exploratory lattice QCD study of a TMD observable in the pion describing the Boer-Mulders effect, which is related to polarized quark transverse momentum in an unpolarized hadron. Particular emphasis is placed on the behavior as a function of a Collins-Soper evolution parameter quantifying the relative rapidity of the struck quark and the initial hadron, e.g., in a semi-inclusive deep inelastic scattering (SIDIS) process. The lattice calculation, performed at the pion mass m_pi = 518 MeV, utilizes a definition of TMDs via hadronic matrix elements of a quark bilocal operator with a staple-shaped gauge connection; in this context, the evolution parameter is related to the staple direction. By parametrizing the aforementioned matrix elements in terms of invariant amplitudes, the problem can be cast in a Lorentz frame suited for the lattice calculation. In contrast to an earlier nucleon study, due to the lower mass of the pion, the calculated data enable quantitative statements about the physically interesting limit of large relative rapidity. In passing, the similarity between the Boer-Mulders effects extracted in the pion and the nucleon is noted.Comment: 16 pages, 9 figures, 3 table

    Intrinsic quark transverse momentum in the nucleon from lattice QCD

    Full text link
    A better understanding of transverse momentum (k_T-) dependent quark distributions in a hadron is needed to interpret several experimentally observed large angular asymmetries and to clarify the fundamental role of gauge links in non-abelian gauge theories. Based on manifestly non-local gauge invariant quark operators we introduce process-independent k_T-distributions and study their properties in lattice QCD. We find that the longitudinal and transverse momentum dependence approximately factorizes, in contrast to the behavior of generalized parton distributions. The resulting quark k_T-probability densities for the nucleon show characteristic dipole deformations due to correlations between intrinsic k_T and the quark or nucleon spin. Our lattice calculations are based on N_f=2+1 mixed action propagators of the LHP collaboration.Comment: 4 pages, 3 figure

    Sivers and Boer-Mulders observables from lattice QCD

    Full text link
    We present a first calculation of transverse momentum dependent nucleon observables in dynamical lattice QCD employing non-local operators with staple-shaped, "process-dependent" Wilson lines. The use of staple-shaped Wilson lines allows us to link lattice simulations to TMD effects determined from experiment, and in particular to access non-universal, naively time-reversal odd TMD observables. We present and discuss results for the generalized Sivers and Boer-Mulders transverse momentum shifts for the SIDIS and DY cases. The effect of staple-shaped Wilson lines on T-even observables is studied for the generalized tensor charge and a generalized transverse shift related to the worm gear function g_1T. We emphasize the dependence of these observables on the staple extent and the Collins-Soper evolution parameter. Our numerical calculations use an n_f = 2+1 mixed action scheme with domain wall valence fermions on an Asqtad sea and pion masses 369 MeV as well as 518 MeV.Comment: 25 pages, 13 figures; version accepted by journal. Contains additional section explaining and summarizing the methodolog

    Corrections to scaling in multicomponent polymer solutions

    Full text link
    We calculate the correction-to-scaling exponent ωT\omega_T that characterizes the approach to the scaling limit in multicomponent polymer solutions. A direct Monte Carlo determination of ωT\omega_T in a system of interacting self-avoiding walks gives ωT=0.415(20)\omega_T = 0.415(20). A field-theory analysis based on five- and six-loop perturbative series leads to ωT=0.41(4)\omega_T = 0.41(4). We also verify the renormalization-group predictions for the scaling behavior close to the ideal-mixing point.Comment: 21 page
    • …
    corecore