13,006 research outputs found

    Mass Terms in Effective Theories of High Density Quark Matter

    Get PDF
    We study the structure of mass terms in the effective theory for quasi-particles in QCD at high baryon density. To next-to-leading order in the 1/pF1/p_F expansion we find two types of mass terms, chirality conserving two-fermion operators and chirality violating four-fermion operators. In the effective chiral theory for Goldstone modes in the color-flavor-locked (CFL) phase the former terms correspond to effective chemical potentials, while the latter lead to Lorentz invariant mass terms. We compute the masses of Goldstone bosons in the CFL phase, confirming earlier results by Son and Stephanov as well as Bedaque and Sch\"afer. We show that to leading order in the coupling constant gg there is no anti-particle gap contribution to the mass of Goldstone modes, and that our results are independent of the choice of gauge.Comment: 22 pages, 4 figure

    Superdense Matter

    Get PDF
    We review recent work on the phase structure of QCD at very high baryon density. We introduce the phenomenon of color superconductivity and discuss the use of weak coupling methods. We study the phase structure as a function of the number of flavors and their masses. We also introduce effective theories that describe low energy excitations at high baryon density. Finally, we study the possibility of kaon condensation at very large baryon density.Comment: 13 pages, talk at ICPAQGP, Jaipur, India, Nov. 26-30, 2001; to appear in the proceeding

    QCD at Finite Density and Color Superconductivity

    Get PDF
    Brief review of current status of the field.Comment: Invited talk at Lattice 99, Pisa, July 1999. 5 pages, 7 fig

    Phases of QCD at High Baryon Density

    Get PDF
    We review recent work on the phase structure of QCD at very high baryon density. We introduce the phenomenon of color superconductivity and discuss how the quark masses and chemical potentials determine the structure of the superfluid quark phase. We comment on the possibility of kaon condensation at very high baryon density and study the competition between superfluid, density wave, and chiral crystal phases at intermediate density.Comment: 15 pages. To appear in the proceedings of the ECT Workshop on Neutron Star Interiors, Trento, Italy, June 200

    Instanton Effects in QCD at High Baryon Density

    Get PDF
    We study instanton effects in QCD at very high baryon density. In this regime instantons are suppressed by a large power of (ΛQCD/μ)(\Lambda_{QCD}/\mu), where ΛQCD\Lambda_{QCD} is the QCD scale parameter and μ\mu is the baryon chemical potential. Instantons are nevertheless important because they contribute to several physical observables that vanish to all orders in perturbative QCD. We study, in particular, the chiral condensate and its contribution mGB2mm_{GB}^2\sim m to the masses of Goldstone bosons in the CFL phase of QCD with Nf=3N_f=3 flavors. We find that at densities ρ(510)ρ0\rho\sim (5-10) \rho_0, where ρ0\rho_0 is the density of nuclear matter, the result is dominated by large instantons and subject to considerable uncertainties. We suggest that these uncertainties can be addressed using lattice calculations of the instanton density and the pseudoscalar diquark mass in QCD with two colors. We study the topological susceptibility and Witten-Veneziano type mass relations in both Nc=2N_c=2 and Nc=3N_c=3 QCD.Comment: 27 pages, 8 figures, minor revision

    Conduction States with Vanishing Dimerization in Pt Nanowires on Ge(001) Observed with Scanning Tunneling Microscopy

    Full text link
    The low-energy electronic properties of one-dimensional nanowires formed by Pt atoms on Ge(001) are studied with scanning tunneling microscopy down to the millivolt-regime. The chain structure exhibits various dimerized elements at high tunneling bias, indicative of a substrate bonding origin rather than a charge density wave. Unexpectedly, this dimerization becomes vanishingly small when imaging energy windows close to the Fermi level with adequately low tunneling currents. Evenly spaced nanowire atoms emerge which are found to represent conduction states. Implications for the metallicity of the chains are discussed.Comment: 4 pages, 4 figure

    On Color Superconductivity in External Magnetic Field

    Get PDF
    We study color superconductivity in external magnetic field. We discuss the reason why the mixing angles in color-flavor locked (CFL) and two-flavor superconductivity (2SC) phases are different despite the fact that the CFL gap goes to the 2SC gap for msm_s \to \infty. Although flavor symmetry is explicitly broken in external magnetic field, we show that all values of gaps in their coset spaces of possible solutions in the CFL phase are equivalent in external magnetic field.Comment: 12 pages, LaTe

    Superconductivity from perturbative one-gluon exchange in high density quark matter

    Get PDF
    We study color superconductivity in QCD at asymptotically large chemical potential. In this limit, pairing is dominated by perturbative one-gluon exchange. We derive the Eliashberg equation for the pairing gap and solve this equation numerically. Taking into account both magnetic and electric gluon exchanges, we find Δg5exp(c/g)\Delta\sim g^{-5}\exp(-c/g) with c=3π2/2c=3\pi^2/\sqrt{2}, verifying a recent result by Son. For chemical potentials that are of physical interest, μ<1\mu< 1 GeV, the calculation ceases to be reliable quantitatively, but our results suggest that the gap can be as large as 100 MeV.Comment: 19 pages, 6 figures. I accidentally replaced the paper with an outdated version. This version has typos corrected and will appear in PR

    Debye screening and Meissner effect in a three-flavor color superconductor

    Get PDF
    I compute the gluon self-energy in a color superconductor with three flavors of massless quarks, where condensation of Cooper pairs breaks the color and flavor SU(3)_c x U(3)_V x U(3)_A symmetry of QCD to the diagonal subgroup SU(3)_{c+V}. At zero temperature, all eight electric gluons obtain a Debye screening mass, and all eight magnetic gluons a Meissner mass. The Debye as well as the Meissner masses are found to be equal for the different gluon colors. These masses determine the coefficients of the kinetic terms in the effective theory for the low-energy degrees of freedom. Their values agree with those obtained by Son and Stephanov.Comment: 10 pages, 1 figure (eps
    corecore