81 research outputs found

    Verfahren zur Bewertung des Statistischen Multiplex bei der Videocodierung

    Get PDF
    Dieser Beitrag beschreibt ein Verfahren zur objektiven Bewertung von Systemen mit statistischem Multiplex, das für den Vergleich verschiedener Systeme und zur Abschätzung des Gewinns an Datenrate eingesetzt werden kann. Für die Auswertung wurde zunächst eine Mittelwertbildung für objektive PSNR-Messungen begutachtet und zusätzlich mit den Verfahren DMOS und JND, als zwei Repräsentanten mit Modellierung subjektiver Eigenschaften, verglichen. In der Konsequenz wurde ein Verfahren entwickelt, das auf einer einfachen PSNR-Berechnung für jedes Einzelbild mit einer anschließenden Auswertung eines PSNR-Histogramms beruht. Dabei wird letztlich die Auftrittshäufigkeit niedriger PSNR-Werte als Maß für die Bildqualität eines Kanals im Statistischen Multiplex genutzt

    Introduction

    Get PDF

    Применение МКЭ для анализа сварных конструкций с дефектами типа трещин

    Get PDF
    В данной работе исследован нелинейный процесс деформирования сварных конструкций с трещиноподобными дефектами. В качестве основного параметра используется энергетический J-интеграл и эквивалентная пластическая деформация. Величину J-интеграла для элемента конструкции с трещиной можно определить численными методами, например методом конечных элементов. Автоматизированный анализ изделий с трещиноподобными дефектами осуществлялся с использованием программного комплекса ANSYS и программного комплекса CRACK, разработанным в Карагандинском государственном техническом университете (КарГТУ)

    The Reaction Specificity of Mammalian ALOX15 Orthologs is Changed During Late Primate Evolution and These Alterations Might Offer Evolutionary Advantages for Hominidae

    Get PDF
    Arachidonic acid lipoxygenases (ALOXs) have been implicated in the immune response of mammals. The reaction specificity of these enzymes is decisive for their biological functions and ALOX classification is based on this enzyme property. Comparing the amino acid sequences and the functional properties of selected mammalian ALOX15 orthologs we previously hypothesized that the reaction specificity of these enzymes can be predicted based on their amino acid sequences (Triad Concept) and that mammals, which are ranked in evolution below gibbons, express arachidonic acid 12-lipoxygenating ALOX15 orthologs. In contrast, Hominidae involving the great apes and humans possess 15-lipoxygenating enzymes (Evolutionary Hypothesis). These two hypotheses were based on sequence data of some 60 mammalian ALOX15 orthologs and about half of them were functionally characterized. Here, we compared the ALOX15 sequences of 152 mammals representing all major mammalian subclades expressed 44 novel ALOX15 orthologs and performed extensive mutagenesis studies of their triad determinants. We found that ALOX15 genes are absent in extant Prototheria but that corresponding enzymes frequently occur in Metatheria and Eutheria. More than 90% of them catalyze arachidonic acid 12-lipoxygenation and the Triad Concept is applicable to all of them. Mammals ranked in evolution above gibbons express arachidonic acid 15-lipoxygenating ALOX15 orthologs but enzymes with similar specificity are only present in less than 5% of mammals ranked below gibbons. This data suggests that ALOX15 orthologs have been introduced during Prototheria-Metatheria transition and put the Triad Concept and the Evolutionary Hypothesis on a much broader and more reliable experimental basis

    Humanization of the Reaction Specificity of Mouse Alox15b Inversely Modified the Susceptibility of Corresponding Knock-In Mice in Two Different Animal Inflammation Models

    Get PDF
    Mammalian arachidonic acid lipoxygenases (ALOXs) have been implicated in the pathogenesis of inflammatory diseases, and its pro- and anti-inflammatory effects have been reported for different ALOX-isoforms. Human ALOX15B oxygenates arachidonic acid to its 15-hydroperoxy derivative, whereas the corresponding 8-hydroperoxide is formed by mouse Alox15b (Alox8). This functional difference impacts the biosynthetic capacity of the two enzymes for creating pro- and anti-inflammatory eicosanoids. To explore the functional consequences of the humanization of the reaction specificity of mouse Alox15b in vivo, we tested Alox15b knock-in mice that express the arachidonic acid 15-lipoxygenating Tyr603Asp and His604Val double mutant of Alox15b, instead of the arachidonic acid 8-lipoxygenating wildtype enzyme, in two different animal inflammation models. In the dextran sodium sulfate-induced colitis model, female Alox15b-KI mice lost significantly more bodyweight during the acute phase of inflammation and recovered less rapidly during the resolution phase. Although we observed significant differences in the colonic levels of selected pro- and anti-inflammatory eicosanoids during the time-course of inflammation, there were no differences between the two genotypes at any time-point of the disease. In Freund's complete adjuvant-induced paw edema model, Alox15b-KI mice were less susceptible than outbred wildtype controls, though we did not observe significant differences in pain perception (Hargreaves-test, von Frey-test) when the two genotypes were compared. our data indicate that humanization of the reaction specificity of mouse Alox15b (Alox8) sensitizes mice for dextran sodium sulfate-induced experimental colitis, but partly protects the animals in the complete Freund's adjuvant-induced paw edema model

    Circulating soluble EPCR levels are reduced in patients with ischemic peripheral artery disease and associated with markers of endothelial and vascular function

    Get PDF
    (1) Background: Endothelial dysfunction initiates cardiovascular pathologies, including peripheral artery disease (PAD). The pathophysiology of impaired new vessel formation in the presence of angiogenic stimuli, such as ischemia and inflammation, is unknown. We have recently shown in mice that reduced endothelial protein C receptor (EPCR) expression results in defective angiogenesis following experimental hindlimb ischemia. (2) Purpose: To determine soluble (s)EPCR levels in the plasma of patients with PAD and to compare them with the protein C activity and biomarkers of endothelial function, inflammation, and angiogenesis. (3) Methods and Results: Clinical tests of vascular function and immunoassays of plasma from patients with PAD stage II were compared to age- and sex-matched individuals with and without cardiovascular risk factors or PAD stage III/IV patients. sEPCR levels were significantly lower in PAD stage II patients compared to subjects with risk factors, but no PAD, and further decreased in PAD stage III/IV patients. Plasma protein C activity or levels of ADAM17, a mediator of EPCR shedding, did not differ. Significant associations between sEPCR and the ankle-brachial index (p = 0.0359), age (p = 0.0488), body mass index (p = 0.0110), and plasma sE-selectin levels (p = 0.0327) were observed. High-sensitive CRP levels and white blood cell counts were significantly elevated in PAD patients and associated with serum glucose levels, but not sEPCR. In contrast, plasma TNFα or IL1β levels did not differ. Circulating levels of VEGF were significantly elevated in PAD stage II patients (p = 0.0198), but not associated with molecular (sE-selectin) or functional (ankle-brachial index) markers of vascular health. (4) Conclusions: Our findings suggest that circulating sEPCR levels may be useful as biomarkers of endothelial dysfunction, including angiogenesis, in persons older than 35 years and that progressive loss of endothelial protein C receptors might be involved in the development and progression of PAD

    Isolation and characterization of Chinese hamster cells defective in cell-cell coupling via gap junctions

    Get PDF
    Chinese hamster Wg3-h-o cells which were descended from DON cells have been mutagenized and selected for derivatives defective in metabolic cooperation via gap junctions (i.e., mec−). The selection protocol included four consecutive cycles of cocultivating mutagenized cells, deficient in hypoxanthine phosphoribosyltransferase (HPRT) and wild-type cells in the presence of thioguanine (cf Slack, C, Morgan, R H M & Hooper, M L, Exp cell res 117 (1978) 195-205) [8]. We carried out the last two selection cycles in the presence of 1 mM dibutyryl cyclic adenosine monophosphate (db-cAMP). The isolated Chinese hamster CI-4 cells which expressed the mec− phenotype most stringently showed the following characteristics: 1. 1. In standard culture medium no cell-cell coupling was detected among CI-4 cells when assayed by injections of the fluorescent dye Lucifer yellow or by electrical measurements. Between 73 and 100% of the mec+ parental cells were coupled under these conditions. Up to 14% positive contacts were found between CI-4 cells and Chinese hamster Don cells (mec+). Confluent CI-4 cells grown in the presence of 1 mM db-cAMP showed 9% coupled cells. 2. 2. No gap junction plaques were found on electron micrographs of freeze-fractured, confluent CI-4 cells. The mec+ parental cells showed small gap junction plaques (0.013% of the total cell surface analyzed). 3. 3. CI-4 cells exhibited 16% positive contacts and the parental Wg3-h-o cells showed 92% positive contacts in autoradiographic measurements of metabolic cooperation with DON cells. On an extracellular matrix, prepared from normal embryonic fibroblasts, metabolic cooperation between CI-4 and DON cells was autoradiographically measured to be 68%. Other cells of spontaneous mec− phenotype (for example mouse L cells or human fibrosarcoma HT1080 cells) also appeared to exhibit increased metabolic cooperation when grown on an extracellular matrix and assayed by autoradiographic measurements. When tested by Lucifer yellow injections, however, only very few positive contacts were found for CI-4/DON cell pairs and no positive contacts were found among mouse L cells grown on an extracellular matrix. 4. 4. The mec− defect in the genome of CI-4 cells was cured in somatic cell hybrids with mouse embryonic fibroblasts or with mouse embryonal carcinoma cells. The results of isozyme and karyotype studies of mec−, as well as mec+ somatic cell hybrids suggest that mouse chromosome 16 may be involved in complementation of the mec− defect
    corecore