6 research outputs found

    The Spectrum Dip of Deck Mounted Systems

    No full text
    In this paper, a detailed model of a ship deck and attached dynamic systems was developed and subjected to dynamic studies using two different shock inputs: a triangular shaped velocity pulse and the vertical motion of the innerbottom of the standard Floating Shock Platform (FSP). Two studies were conducted, one considering four single degree-of-freedom systems attached at various deck locations and another considering a three-mass system attached at one location. The two shock inputs were used only for the multi-mass system study. The triangular pulse was used for the four single degree-of-freedom systems study. For the single degree-of-freedom systems study, shock spectra were first calculated at the four mounting locations assuming the oscillators were not present. Then the oscillator systems were added to these grid points to determine the change in the shock spectra. First, the oscillators were added one at a time, and then all the oscillators were added to the deck. The multi-mass system was analyzed using both shock inputs. First, the fixed-base modal masses and frequencies were determined. Then, the system as a whole was attached to the deck and the spectrum values at the base point were determined and compared to those for the free deck case. In the last step each mode of the multi-mass system, represented by a single degree-of-freedom system with the modal mass and appropriate spring stiffness, was considered individually to determine the spectrum responses. Results of the free deck, the entire system and individual modal responses are compared

    Uncertainty Quantification In Large Computational Engineering Models

    No full text
    While a wealth of experience in the development of uncertainty quantification methods and software tools exists at present, a cohesive software package utilizing massively parallel computing resources does not. The thrust of the work to be discussed herein is the development of such a toolkit, which has leveraged existing software frameworks (e.g., DAKOTA (Design Analysis Kit for OpTimizAtion)) where possible, and has undertaken additional development efforts when necessary. The contributions of this paper are two-fold. One, the design and structure of the toolkit from a software perspective will be discussed, detailing some of its distinguishing features. Second, the toolkit's capabilities will be demonstrated by applying a subset of its available uncertainty quantification techniques to an example problem involving multiple engineering disciplines, nonlinear solid mechanics and soil mechanics. This example problem will demonstrate the toolkit's suitability in quantifying uncertainty in engineering applications of interest modeled using very large computational system models
    corecore