82 research outputs found
Dual tumor suppressing and promoting function of Notch1 signaling in human prostate cancer.
Adenocarcinomas of the prostate arise as multifocal heterogeneous lesions as the likely result of genetic and epigenetic alterations and deranged cell-cell communication. Notch signaling is an important form of intercellular communication with a role in growth/differentiation control and tumorigenesis. Contrasting reports exist in the literature on the role of this pathway in prostate cancer (PCa) development. We show here that i) compared to normal prostate tissue, Notch1 expression is significantly reduced in a substantial fraction of human PCas while it is unaffected or even increased in others; ii) acute Notch activation both inhibits and induces process networks associated with prostatic neoplasms; iii) down-modulation of Notch1 expression and activity in immortalized normal prostate epithelial cells increases their proliferation potential, while increased Notch1 activity in PCa cells suppresses growth and tumorigenicity through a Smad3-dependent mechanism involving p21WAF1/CIP1; iv) prostate cancer cells resistant to Notch growth inhibitory effects retain Notch1-induced upregulation of pro-oncogenic genes, like EPAS1 and CXCL6, also overexpressed in human PCas with high Notch1 levels. Taken together, these results reconcile conflicting data on the role of Notch1 in prostate cancer
p63 is an alternative p53 repressor in melanoma that confers chemoresistance and a poor prognosis.
The role of apoptosis in melanoma pathogenesis and chemoresistance is poorly characterized. Mutations in TP53 occur infrequently, yet the TP53 apoptotic pathway is often abrogated. This may result from alterations in TP53 family members, including the TP53 homologue TP63. Here we demonstrate that TP63 has an antiapoptotic role in melanoma and is responsible for mediating chemoresistance. Although p63 was not expressed in primary melanocytes, up-regulation of p63 mRNA and protein was observed in melanoma cell lines and clinical samples, providing the first evidence of significant p63 expression in this lineage. Upon genotoxic stress, endogenous p63 isoforms were stabilized in both nuclear and mitochondrial subcellular compartments. Our data provide evidence of a physiological interaction between p63 with p53 whereby translocation of p63 to the mitochondria occurred through a codependent process with p53, whereas accumulation of p53 in the nucleus was prevented by p63. Using RNA interference technology, both isoforms of p63 (TA and ΔNp63) were demonstrated to confer chemoresistance, revealing a novel oncogenic role for p63 in melanoma cells. Furthermore, expression of p63 in both primary and metastatic melanoma clinical samples significantly correlated with melanoma-specific deaths in these patients. Ultimately, these observations provide a possible explanation for abrogation of the p53-mediated apoptotic pathway in melanoma, implicating novel approaches aimed at sensitizing melanoma to therapeutic agents
Identification of a minimum number of genes to predict triple-negative breast cancer subgroups from gene expression profiles
Background: Triple-negative breast cancer (TNBC) is a very heterogeneous disease. Several gene expression and mutation profiling approaches were used to classify it, and all converged to the identification of distinct molecular subtypes, with some overlapping across different approaches. However, a standardised tool to routinely classify TNBC in the clinics and guide personalised treatment is lacking. We aimed at defining a specific gene signature for each of the six TNBC subtypes proposed by Lehman et al. in 2011 (basal-like 1 (BL1); basal-like 2 (BL2); mesenchymal (M); immunomodulatory (IM); mesenchymal stem-like (MSL); and luminal androgen receptor (LAR)), to be able to accurately predict them. Methods: Lehman’s TNBCtype subtyping tool was applied to RNA-sequencing data from 482 TNBC (GSE164458), and a minimal subtype-specific gene signature was defined by combining two class comparison techniques with seven attribute selection methods. Several machine learning algorithms for subtype prediction were used, and the best classifier was applied on microarray data from 72 Italian TNBC and on the TNBC subset of the BRCA-TCGA data set. Results: We identified two signatures with the 120 and 81 top up- and downregulated genes that define the six TNBC subtypes, with prediction accuracy ranging from 88.6 to 89.4%, and even improving after removal of the least important genes. Network analysis was used to identify highly interconnected genes within each subgroup. Two druggable matrix metalloproteinases were found in the BL1 and BL2 subsets, and several druggable targets were complementary to androgen receptor or aromatase in the LAR subset. Several secondary drug–target interactions were found among the upregulated genes in the M, IM and MSL subsets. Conclusions: Our study took full advantage of available TNBC data sets to stratify samples and genes into distinct subtypes, according to gene expression profiles. The development of a data mining approach to acquire a large amount of information from several data sets has allowed us to identify a well-determined minimal number of genes that may help in the recognition of TNBC subtypes. These genes, most of which have been previously found to be associated with breast cancer, have the potential to become novel diagnostic markers and/or therapeutic targets for specific TNBC subsets
Effects of regular salt marsh haying on marsh plants, algae, invertebrates and birds at Plum Island Sound, Massachusetts
Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Wetlands Ecology and Management 17 (2009): 469-487, doi: 10.1007/s11273-008-9125-3.The haying of salt marshes, a traditional activity since colonial times in New England, still occurs in about 400 ha of marsh in the Plum Island Sound estuary in northeastern Massachusetts. We took advantage of this haying activity to investigate how the periodic large-scale removal of aboveground biomass affects a number of marsh processes. Hayed marshes were no different from adjacent reference marshes in plant species density (species per area) and end-of-year aboveground biomass, but did differ in vegetation composition. Spartina patens was more abundant in hayed marshes than S. alterniflora, and the reverse was true in reference marshes. The differences in relative covers of these plant species were not associated with any differences between hayed and reference marshes in the elevations of the marsh platform. Instead it suggested that S. patens was more tolerant of haying than S. alterniflora. S. patens had higher stem densities in hayed marshes than it did in reference marshes, suggesting that periodic cutting stimulated tillering of this species. Although we predicted that haying would stimulate benthic chlorophyll production by opening up the canopy, we found differences to be inconsistent, possibly due to the relatively rapid regrowth of S. patens and to grazing by invertebrates on the algae. The pulmonate snail, Melampus bidendatus was depleted in its δ13C content in the hayed marsh compared to the reference, suggesting a diet shift to benthic algae in hayed marshes. The stable isotope ratios of a number of other consumer species were not affected by haying activity. Migratory shorebirds cue in to recently hayed marshes and may contribute to short term declines in some invertebrate species, however the number of taxa per unit area of marsh surface invertebrates and their overall abundances were unaffected by haying over the long term. Haying had no impact on nutrient concentrations in creeks just downstream from hayed plots, but the sediments of hayed marshes were lower in total N and P compared to references. In sum, haying appeared to affect plant species composition but had only short-term affects on consumer organisms. This contrasts with many grassland ecosystems, where an intermediate level of disturbance, such as by grazing, increases species diversity and may stimulate productivity. From a management perspective, periodic mowing could be a way to maintain S. patens habitats and the suite of species with which they are associated.This research was supported by the Plum Island Ecosystem Long Term Ecological Research program (OCE-972692 and OCE 0423565) of the National Science Foundation (NSF). J. Horowitz and J. Ludlam were supported by NSF Research Experience for Undergraduate (REU) grants when they were students at Hampshire College and Gordon College respectively
Intimate functional interactions between TGS1 and the Smn complex revealed by an analysis of the Drosophila eye development.
This is the final version. Available from Public Library of Science via the DOI in this record. Trimethylguanosine synthase 1 (TGS1) is a conserved enzyme that mediates formation of the trimethylguanosine cap on several RNAs, including snRNAs and telomerase RNA. Previous studies have shown that TGS1 binds the Survival Motor Neuron (SMN) protein, whose deficiency causes spinal muscular atrophy (SMA). Here, we analyzed the roles of the Drosophila orthologs of the human TGS1 and SMN genes. We show that the Drosophila TGS1 protein (dTgs1) physically interacts with all subunits of the Drosophila Smn complex (Smn, Gem2, Gem3, Gem4 and Gem5), and that a human TGS1 transgene rescues the mutant phenotype caused by dTgs1 loss. We demonstrate that both dTgs1 and Smn are required for viability of retinal progenitor cells and that downregulation of these genes leads to a reduced eye size. Importantly, overexpression of dTgs1 partially rescues the eye defects caused by Smn depletion, and vice versa. These results suggest that the Drosophila eye model can be exploited for screens aimed at the identification of genes and drugs that modify the phenotypes elicited by Tgs1 and Smn deficiency. These modifiers could help to understand the molecular mechanisms underlying SMA pathogenesis and devise new therapies for this genetic disease
Non-small cell lung cancer testing on reference specimens: an italian multicenter experience
Introduction: Biomarker testing is mandatory for the clinical management of patients with advanced non-small cell lung cancer (NSCLC). Myriads of technical platforms are now available for biomarker analysis with differences in terms of multiplexing capability, analytical sensitivity, and turnaround time (TAT). We evaluated the technical performance of the diagnostic workflows of 24 representative Italian institutions performing molecular tests on a series of artificial reference specimens built to mimic routine diagnostic samples.
Methods: Sample sets of eight slides from cell blocks of artificial reference specimens harboring exon 19 EGFR (epidermal growth factor receptor) p.E746_AT50del, exon 2 KRAS (Kirsten rat sarcoma viral oncogene homologue) p.G12C, ROS1 (c-ros oncogene 1)-unknown gene fusion, and MET (MET proto-oncogene, receptor tyrosine kinase) Δ exon 14 skipping were distributed to each participating institution. Two independent cell block specimens were validated by the University of Naples Federico II before shipment. Methodological and molecular data from reference specimens were annotated.
Results: Overall, a median DNA concentration of 3.3 ng/μL (range 0.1–10.0 ng/μL) and 13.4 ng/μL (range 2.0–45.8 ng/μL) were obtained with automated and manual technical procedures, respectively. RNA concentrations of 5.7 ng/μL (range 0.2–11.9 ng/μL) and 9.3 ng/μL (range 0.5–18.0 ng/μL) were also detected. KRAS exon 2 p.G12C, EGFR exon 19 p.E736_A750del hotspot mutations, and ROS1 aberrant transcripts were identified in all tested cases, whereas 15 out of 16 (93.7%) centers detected MET exon 14 skipping mutation.
Conclusions: Optimized technical workflows are crucial in the decision-making strategy of patients with NSCLC. Artificial reference specimens enable optimization of diagnostic workflows for predictive molecular analysis in routine clinical practice
- …