48 research outputs found

    Visibility analysis of boundary layer transition

    Get PDF
    We study the transition to turbulence in a flat plate boundary layer by means of visibility analysis of velocity time-series extracted across the flow domain. By taking into account the mutual visibility of sampled values, visibility graphs are constructed from each time series. The latter are, thus, transformed into a geometrical object, whose main features can be explored using measures typical of network science that provide a reduced order representation of the underlying flow properties. Using these metrics, we observe the evolution of the flow from laminarity to turbulence and the effects exerted by the free-stream turbulence. Different from other methods requiring an extensive amount of spatiotemporal data (e.g., full velocity field) or a set of parameters and thresholds arbitrarily chosen by the user, the present network-based approach is able to identify the onset markers for transition by means of the streamwise velocity time-series alone. Published under an exclusive license by AIP Publishing

    Effects of Atrial Fibrillation on the Coronary Flow at Different Heart Rates: A Computational Approach

    Get PDF
    Atrial fibrillation (AF) has several effects on the cardiovascular system responses. This study focuses on the consequences of AF on the coronary blood flow, by exploiting a computational approach. 2000 heartbeat periods (RR) were simulated for 5 different mean heart rates (HR), ranging from 50 to 130 bpm. The resulting flow rate signals at the coronary level were analysed through a specific set of hemodynamic parameters. Three main results emerge during AF: (i) maximal coronary flow rates modify with HR, (ii) the coronary perfusion begins to be impaired when exceeding 90-110 bpm, and (iii) the coronary perfusion pressure is not a good estimate of the coronary blood flow at HRs higher than 90-110 bpm

    An exploratory analysis of the transient and long-term behavior of small three-dimensional perturbations in the circular cylinder wake

    Get PDF
    An initial-value problem (IVP) for arbitrary small three-dimensional vorticity perturbations imposed on a free shear flow is considered. The viscous perturbation equations are then combined in terms of the vorticity and velocity, and are solved by means of a combined Laplace–Fourier transform in the plane normal to the basic flow. The perturbations can be uniform or damped along the mean flow direction. This treatment allows for a simplification of the governing equations such that it is possible to observe long transients, which can last hundreds time scales. This result would not be possible over an acceptable lapse of time by carrying out a direct numerical integration of the linearized Navier–Stokes equations. The exploration is done with respect to physical inputs as the angle of obliquity, the symmetry of the perturbation, and the streamwise damping rate. The base flow is an intermediate section of the growing two-dimensional circular cylinder wake where the entrainment process is still active. Two Reynolds numbers of the order of the critical value for the onset of the first instability are considered. The early transient evolution offers very different scenarios for which we present a summary for particular cases. For example, for amplified perturbations, we have observed two kinds of transients, namely (1) a monotone amplification and (2) a sequence of growth–decrease–final growth. In the latter case, if the initial condition is an asymmetric oblique or longitudinal perturbation, the transient clearly shows an initial oscillatory time scale. That increases moving downstream, and is different from the asymptotic value. Two periodic temporal patterns are thus present in the system. Furthermore, the more a perturbation is longitudinally confined, the more it is amplified in time. The long-term behavior of two-dimensional disturbances shows excellent agreement with a recent two-dimensional spatio-temporal multiscale model analysis and with laboratory data concerning the frequency and wave length of the parallel vortex shedding in the cylinder wake

    Characterizing the cardiovascular functions during atrial fibrillation through lumped-parameter modeling

    Get PDF
    Atrial fibrillation (AF), causing irregular and rapid heartbeats, is the most common arrhythmia. Due to the widespread impact on the population and the disabling symptoms related to rapid heart rate, AF is a subject of growing interest under several aspects: statistical analyses on the heartbeat distributions, risk factors, impact on quality of life, correlation with other cardiac pathologies. However, several key points on the consequences induced by AF on the cardiovascular system are still not completely understood. The proposed work aims at quantifying the impact of AF on the most relevant cardiovascular parameters by means of a lumped-parameter modeling, paying particular attention to the stochastic nature of the irregular heartbeats and the reduced contractility of the heart. The global response leads to a rather impressive overall agreement with the clinical state-of-the-art measures regarding AF: reduced cardiac output with correlated arterial hypotension, as well as higher left atrial volume and pressure values are some of the most representative outcomes emerging during AF. Moreover, new insights on hemodynamic parameters such as cardiac flow rates, which are difficult to measure and almost never offered in literature, are here provided

    Experimental investigation of vertical turbulent transport of a passive scalar in a boundary layer: Statistics and visibility graph analysis

    Get PDF
    The dynamics of a passive scalar plume in a turbulent boundary layer is experimentally investigated via vertical turbulent transport time-series. Data are acquired in a rough-wall turbulent boundary layer that develops in a recirculating wind tunnel set-up. Two source sizes in an elevated position are considered in order to investigate the influence of the emission conditions on the plume dynamics. The analysis is focused on the effects of the meandering motion and the relative dispersion. First, classical statistics are investigated. We found that (in accordance with previous studies) the meandering motion is the main responsible for differences in the variance and intermittency, as well as the kurtosis and power spectral density, between the two source sizes. On the contrary, the mean and the skewness are slightly affected by the emission conditions. To characterize the temporal structure of the turbulent transport series, the visibility algorithm is exploited to carry out a complex network-based analysis. Two network metrics -- the average peak occurrence and the assortativity coefficient -- are analysed, as they can capture the temporal occurrence of extreme events and their relative intensity in the series. The effects of the meandering motion and the relative dispersion of the plume are discussed in the view of the network metrics, revealing that a stronger meandering motion is associated with higher values of both the average peak occurrence and the assortativity coefficient. The network-based analysis advances the level of information of classical statistics, by characterizing the impact of the emission conditions on the temporal structure of the signals in terms of extreme events and their relative intensity. In this way, complex networks provide -- through the evaluation of network metrics -- an effective tool for time-series analysis of experimental data
    corecore