159 research outputs found

    Methane dry reforming over nickel perovsikite catalysts

    Get PDF
    In recent years dry reforming of methane (DRM) has received considerable attention as a promising alternative to steam reforming for synthesis gas (H2 and CO) production. This process could be industrially advantageous, yielding a syngas with a H2/CO ratio close to 1, suitable for Fischer-Tropsch synthesis to liquid hydrocarbons and for production of valuable oxygenated chemicals. The major drawback of the process is the endothermicity of the reaction that implies the use of a suitable catalyst to work at relatively low temperatures (923-1,023 K). Higher temperatures would make the process unaffordable for an industrial development and would increase the risk of undesirable side reactions, such as coke formation, that are the main causes of catalyst deactivation. In this work the activity of nickel perovskite catalysts were studied and the results were compared with rhodium perovskite. It is well known that rhodium is very active and stable for dry reforming but its high cost makes its utilization limited. The Ni, due to its low cost, is a promising substitute even if it is more susceptible to coking. The perovskite structure allows a high dispersion of the metal into the catalyst increasing the catalytic activity. In this work the Ni perovskite was obtained with two methods (auto-combustion and modified citrate methods). The results pointed out that the Ni perovskite obtained with the auto-combustion method is a promising route for the use of Ni in this process. The experimental tests show that with Ni catalyst very good activity can be achieved from temperature of 973 K

    Activated biochars used as adsorbents for dyes removal

    Get PDF
    Adsorption represents one of the most interesting technique for the removal of pollutants from wastewaters. Activated carbons show the best performances on this kind of processes but their high production costs limit their applications. In this context a big challenge is to find new materials having characteristic similar to those of commercial activated carbons but being environmental friendly and cheaper. In this work the adsorption efficiency of activated biochars produced from pine wood was investigated on the removal of dyes from water. An innovative method for the activation of the biochar using deep eutectic solvents (DES) was tuned and the characteristics of the obtained adsorbent material were compared with those of biochar activated with traditional method and non-activated biochar. The best adsorption capacities were obtained with the DES activated biochar, reaching a value of 480 mg/g for the methylene blue adsorption. Adsorption isotherm and kinetic models were applied to experimental data in order to understand the adsorption mechanism of the process

    Biomass gasification plant and syngas clean-up system

    Get PDF
    Gasification is recognized as one of the most promising technologies to convert low quality fuels into more valuable ones. The principal problem related with the use of biomass in gasification processes is the high amount of tar released during the pyrolysis step. It is thus necessary to recover tar and to transform it in lighter combustible gas species such as CH4, CO and H-2. In this work the experimental results of a medium industrial scale plant fed with olive husk and having a capacity of 250 kWt are presented. The gasifier is composed by a up-draft reactor which is followed by a secondary fixed bed reactor filled with alluminium oxide spheres having high porosity dedicated to the tar conversion reactions. The syngas is then used to feed an internal combustion engine with a production of 60 kWe

    Biocrude production by hydrothermal liquefaction of olive residue

    Get PDF
    Hydrothermal liquefaction (HTL) converts biomass into a crude bio-oil by thermally and hydrolytically decomposing the biomacromolecules into smaller compounds. The crude bio-oil, or biocrude, is an energy dense product that can potentially be used as a substitute for petroleum crudes. Liquefaction also produces gases, solids, and water-soluble compounds that can be converted to obtain valuable chemical species or can be used as energy vectors. The process is usually performed in water at 250°C-370°C and under pressures of 4-22 MPa: depending on the adopted pressure and temperature the process can be carried out in sub-critical or super-critical conditions. In the conditions reached in hydrothermal reactors, water changes its properties and acts as a catalyst for the biomass decomposition reactions. One of the main advantages of this process is that the energy expensive biomass-drying step, required in all the thermochemical processes, is not necessary, allowing the use of biomass with high moisture content such as microalgae or olive residue and grape mark. In this work, the feasibility of a hydrothermal process conducted under sub-critical conditions to obtain a bio-oil from the residue of olive oil production is investigated. The experimental tests were performed at 320°C and about 13 MPa, using a biomass to water weight ratio of 1:5. The influence of two different catalysts on the bio-oil yield and quality was investigated: CaO and a zeolite (faujasite-Na). CaO allows the increase of bio-oil yields, while the selected zeolite enhances the deoxygenation reactions, thus improving the bio-oil quality in terms of heating value

    Use of low-cost materials for tar abatement process

    Get PDF
    In the present work char, olivine and mayenite were used as bed materials to study ability to remove tar produced in biomass thermal processing. The tar gases formed from the pyrolysis reactions of the olive pomace biomass were forced to pass through the bed material. Nitrogen was used as carrier gas. The temperature of the bed was set at 660 °C and no oxidizing agent was added during the tests. The char was produced from the pyrolysis of olive pomace biomass. Olivine was used without any pre-treatment. Mayenite was synthesized in laboratory using CaCO3 and Al2O3 as precursors. Among the tested materials, mayenite showed the best tar removal capacity and stability, with a total tar removal of about 60% after 60 min time on stream, while in the case of char and olivine the attained value was 15%. The measured average nitrogen-free gas flow value in the tests carried out with mayenite was 0.84 NL min-1, whereas in the case of char and olivine the obtained average gas flow values were 0.65 and 0.55 NL min-1, respectively. Accordingly, the higher average hydrogen amount was measured in the tests using mayenite as bed material (36%)

    Cataract surgery complications: An in vitro model of toxic effects of Ropivacaine and lidocaine

    Get PDF
    Background: Intraoperative lidocaine is widely used in controlling discomfort during cataract surgery. However, recent studies have confirmed the toxic effect of lidocaine on ganglion cells. Ropivacaine is an anesthetic recently introduced in clinical practice that couples a long anesthetic effect with a mild vasoconstrictive action. Objective: The aim of this study was an in vitro evaluation of the efficacy of ropivacaine in reducing the degenerative effects usually observed during lidocaine treatment. Methods: Ropivacaine and lidocaine toxicity has been evaluated in murine fibroblasts 3T6 by measuring percentage of cell death, cell growth inhibition, and DNA degradation. The choice of this cellular line is motivated by the presence of a complete apoptotic system that can be assimilated to the endothelium precursor cells. Results: We observed that lidocaine 0.25% decreases cell viability and causes DNA degradation in murine fibroblasts 3T6, whereas ropivacaine 0.5% does not cause any cellular or molecular degenerative effect. Conclusions: Our in vitro studies confirm that ropivacaine is less toxic than lidocaine to these cells. Therefore, in vivo studies in the anterior chamber could be useful to evaluate the effects of ropivacaine versus lidocaine in intracameral anesthesia in cataract surgery. © 2011 Vergani & Rusconi, publisher and licensee Adis Data Information BV

    Improved photocatalytic properties of doped titanium-based nanometric oxides

    Get PDF
    Photocatalysis is considered one of the most promising technologies for applications in the environmental field especially in the abatement of water-soluble organic pollutants. In this field, titanium dioxide nanoparticles have drawn much attention recently; however, the use of this oxide presents some limitation since it allows to obtain high photoresponse and degradation efficiency only under UV light irradiation, that represents the 3 to 4% of the solar radiation, so preventing its environmental large-scale applications under diffuse daylight. In this work the photocatalytic efficiencyoftitanium-based oxides systems containing alkaline earth metals such as barium and strontium, prepared by a simple sol-gel method was investigated, evaluating the degradation of methylene blue as model compound under UV and visible light irradiation. The results were compared with those obtained with Degussa P25 titanium dioxide. The achieved degradation percentage of methylene blue are very promising showing that under visible light irradiation it is possible to obtain a maximum dye removal percentage ~ 50 % higher than that obtained with the Degussa P25

    In vitro and in vivo evaluation of NCX 4040 cytotoxic activity in human colon cancer cell lines

    Get PDF
    BACKGROUND: Nitric oxide-releasing nonsteroidal antiinflammatory drugs (NO-NSAIDs) are reported to be safer than NSAIDs because of their lower gastric toxicity. We compared the effect of a novel NO-releasing derivate, NCX 4040, with that of aspirin and its denitrated analog, NCX 4042, in in vitro and in vivo human colon cancer models and investigated the mechanisms of action underlying its antitumor activity. METHODS: In vitro cytotoxicity was evaluated on a panel of colon cancer lines (LoVo, LoVo Dx, WiDr and LRWZ) by sulforhodamine B assay. Cell cycle perturbations and apoptosis were evaluated by flow cytometry. Protein expression was detected by Western blot. In the in vivo experiments, tumor-bearing mice were treated with NCX 4040, five times a week, for six consecutive weeks. RESULTS: In the in vitro studies, aspirin and NCX 4042 did not induce an effect on any of the cell lines, whereas NCX 4040 produced a marked cytostatic dose-related effect, indicating a pivotal role of the -NO(2 )group. Furthermore, in LoVo and LRWZ cell lines, we observed caspase-9 and -3-mediated apoptosis, whereas no apoptotic effect was observed after drug exposure in WiDr or LoVo Dx cell lines. In in vivo studies, both NCX 4040 and its parental compound were administered per os. NCX 4040 induced a 40% reduction in tumor weight. Conversely, aspirin did not influence tumor growth at all. CONCLUSIONS: NCX 4040, but not its parental compound, aspirin, showed an in vitro and in vivo antiproliferative activity, indicating its potential usefulness to treat colon cancer

    Cathepsin B inhibition interferes with metastatic potential of human melanoma: an in vitro and in vivo study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cathepsins represent a group of proteases involved in determining the metastatic potential of cancer cells. Among these are cysteinyl- (e.g. cathepsin B and cathepsin L) and aspartyl-proteases (e.g. cathepsin D), normally present inside the lysosomes as inactive proenzymes. Once released in the extracellular space, cathepsins contribute to metastatic potential by facilitating cell migration and invasiveness.</p> <p>Results</p> <p>In the present work we first evaluated, by <it>in vitro </it>procedures, the role of cathepsins B, L and D, in the remodeling, spreading and invasiveness of eight different cell lines: four primary and four metastatic melanoma cell lines. Among these, we considered two cell lines derived from a primary cutaneous melanoma and from a supraclavicular lymph node metastasis of the same patient. To this purpose, the effects of specific chemical inhibitors of these proteases, i.e. CA-074 and CA-074Me for cathepsin B, Cathepsin inhibitor II for cathepsin L, and Pepstatin A for cathepsin D, were evaluated. In addition, we also analyzed the effects of the biological inhibitors of these cathepsins, i.e. specific antibodies, on cell invasiveness. We found that i) cathepsin B, but not cathepsins L and D, was highly expressed at the surface of metastatic but not of primary melanoma cell lines and that ii) CA-074, or specific antibodies to cathepsin B, hindered metastatic cell spreading and dissemination, whereas neither chemical nor biological inhibitors of cathepsins D and L had significant effects. Accordingly, <it>in vivo </it>studies, i.e. in murine xenografts, demonstrated that CA-074 significantly reduced human melanoma growth and the number of artificial lung metastases.</p> <p>Conclusions</p> <p>These results suggest a reappraisal of the use of cathepsin B inhibitors (either chemical or biological) as innovative strategy in the management of metastatic melanoma disease.</p
    • …
    corecore