129 research outputs found

    The consequences of niche and physiological differentiation of archaeal and bacterial ammonia oxidisers for nitrous oxide emissions

    Get PDF
    The authors are members of the Nitrous Oxide Research Alliance (NORA), a Marie Skłodowska-Curie ITN and research project under the EU's seventh framework program (FP7). GN is funded by the AXA Research Fund and CGR by a Royal Society University Research Fellowship (UF150571) and a Natural Environment Research Council (NERC) Standard Grant (NE/K016342/1). The authors would like to thank Dr Robin Walker and the SRUC Craibstone Estate (Aberdeen) for access to the agricultural plots, Dr Alex Douglas for statistical advice and Philipp Schleusner for assisting microcosm construction and sampling.Peer reviewedPublisher PD

    Detection of peripheral arterial disease with an improved automated device: comparison of a new oscillometric device and the standard Doppler method

    No full text
    Matjaž Špan,1 Gregor Geršak,2 Sandrine C Millasseau,3 Marko Meža,4 Andrej Košir4 1Cardiovascular Department, Izola General Hospital, Izola, 2Laboratory of Metrology and Quality, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia; 3Pulse Wave Consulting, Saint Leu La Foret, France; 4Faculty of Electrical Engineering, User-adapted Communication and Ambient Intelligence Lab, University of Ljubljana, Ljubljana, Slovenia Abstract: In occidental countries, peripheral arterial disease (PAD) is an important health issue; however, most subjects are asymptomatic (~50%) and therefore undiagnosed and untreated. Current guidelines recommend screening for PAD in primary care setting using ankle brachial index (ABI) in all patients with cardiovascular risks. This is, however, not performed strictly because the standard Doppler method is cumbersome and time-consuming. Here, we evaluate the accuracy and reproducibility of ABI measurements obtained by an improved automated oscillometric device, the MESI ABPI MD® device, and the standard Doppler method. ABI was measured in random order in a general practice with Doppler probes by two operators separately (ABI_dop) and twice with the MESI ABPI MD device (ABI_mesi). ABI_dop was calculated dividing the highest systolic blood pressure from both tibial and dorsalis pedis arteries by the highest systolic blood pressure of both brachial arteries. ABI_mesi was obtained automatically with simultaneous measurements on three extremities. According to ABI_dop, PAD was present in 10% of the 136 screened subjects (68.2±7.4 years). Interoperator coefficient of variation was 5.5% for ABI_dop, while the intrasubject coefficient of variation for ABI_mesi was 3.0%. ABI_mesi was correlated with ABI_dop (R=0.61, P<0.0001). The difference between the two techniques was 0.06±0.14 with ABI_mesi providing slightly higher values (P<0.0001) and negligible bias across the range (R=0.19, P<0.0001). Therefore, ABI_mesi ≤1 had a sensitivity of 85% and specificity of 96% to detect ABI_dop ≤0.9 and hence PAD. Doppler measurements took seven times longer than MESI ABPI MD measurements to be performed. In conclusion, MESI improved automated oscillometric method and offered a faster and repeatable measurement of ABI with only a small, clinically irrelevant overestimation of ABI value. The tested MESI ABPI MD-improved oscillometric system can be used as a screening tool for patients in general practice and would enable family doctors to comply with current guidelines for PAD. Keywords: ankle brachial index, peripheral arterial disease, automated oscillometric method, Doppler method, screening too
    • ā€¦
    corecore