3 research outputs found

    Abstracting network elements from mask layout to network management: a case study

    Get PDF
    Using the vertical integration of the Synopsys environment, we analyze a 2 2 integrated optical switch obtaining a layer-0 abstraction used to analyze the impact of the design options on transmission performances of a PM-64QAM 600G channel in multi-hop routing in meshed optical networks. The optical switch is designed targeting the Analog Photonics Process Design Kit. The QoT degradation depending on the design option and on the choice for the transmission technique is assessed, taking into account the number of traversed switches. In addition, different routing techniques for the integrated optical waveguides of the 2x2 switches are investigated in terms of system performances. The reported analysis is an example of comprehensive investigation carried out by abstracting the network elements starting from the component design up to the networking management. This approach is today mandatory to enable the maximum capacity in state-of-the art optical networks. To face this challenging problem, Synopsys proposes a vertically integrated software environment for the design of optical communication systems with photonic integrated circuits: it is the integration of OptSim c -optical communication system, OptSim Circuit -schematic-driven photonic circuit, OptoDesigner c -mask layout, and RSoft component design tools. These tools have proven to be reliable aids to virtually designing and estimating the performance of optical transmission systems and photonic chips

    Simulation of silicon photonic coherent PM-QPSK transceivers using microring modulators

    No full text
    Silicon photonic components are key enablers for low-cost, compact, and reduced power-consumption coherent transceivers. This paper discusses models used to analyze the performance of silicon photonic ring modulators in coherent links, and presents simulation results for 32- and 16-Gbaud PM-QPSK back-to-back transceivers incorporating these modulators in comparison with designs using LiNbO3 MZMs. While the penalty at 32 Gbaud is high, at 16 Gbaud the ring modulator performance approaches that of the MZM, with a sensitivity penalty of only 1.3 dB. Our results also show the strong temperature sensitivity of the ring modulator
    corecore