5 research outputs found
Operational Thermodynamics from Purity (extended abstract)
This is an extended abstract based on the preprint arXiv:1608.04459. We propose four information-theoretic axioms for the foundations of statistical mechanics in general physical theories. The axioms 'Causality, Purity Preservation, Pure Sharpness, and Purification' identify purity as a fundamental ingredient for every sensible theory of thermodynamics. Indeed, in physical theories satisfying these axioms, called sharp theories with purification, every mixed state can be modelled as the marginal of a pure entangled state, and every unsharp measurement can be modelled as a sharp measurement on a composite system. We show that these theories support a well-behaved notion of entropy and of Gibbs states, by which one can derive Landauer's principle. We show that in sharp theories with purification some bipartite states can have negative conditional entropy, and we construct an operational protocol exploiting this feature to overcome Landauer's principlepublished_or_final_versio
Ruling out Higher-Order Interference from Purity Principles
As first noted by Rafael Sorkin, there is a limit to quantum interference. The interference pattern formed in a multi-slit experiment is a function of the interference patterns formed between pairs of slits; there are no genuinely new features resulting from considering three slits instead of two. Sorkin has introduced a hierarchy of mathematically conceivable higher-order interference behaviours, where classical theory lies at the first level of this hierarchy and quantum theory theory at the second. Informally, the order in this hierarchy corresponds to the number of slits on which the interference pattern has an irreducible dependence. Many authors have wondered why quantum interference is limited to the second level of this hierarchy. Does the existence of higher-order interference violate some natural physical principle that we believe should be fundamental? In the current work we show that such principles can be found which limit interference behaviour to second-order, or “quantum-like”, interference, but that do not restrict us to the entire quantum formalism. We work within the operational framework of generalised probabilistic theories, and prove that any theory satisfying Causality, Purity Preservation, Pure Sharpness, and Purification—four principles that formalise the fundamental character of purity in nature—exhibits at most second-order interference. Hence these theories are, at least conceptually, very “close” to quantum theory. Along the way we show that systems in such theories correspond to Euclidean Jordan algebras. Hence, they are self-dual and, moreover, multi-slit experiments in such theories are described by pure projectors
Operational axioms for diagonalizing states
In quantum theory every state can be diagonalized, i.e. decomposed as a convex combination of perfectly distinguishable pure states. This elementary structure plays an ubiquitous role in quantum mechanics, quantum information theory, and quantum statistical mechanics, where it provides the foundation for the notions of majorization and entropy. A natural question then arises: can we reconstruct these notions from purely operational axioms? We address this question in the framework of general probabilistic theories, presenting a set of axioms that guarantee that every state can be diagonalized. The first axiom is Causality, which ensures that the marginal of a bipartite state is well defined. Then, Purity Preservation states that the set of pure transformations is closed under composition. The third axiom is Purification, which allows to assign a pure state to the composition of a system with its environment. Finally, we introduce the axiom of Pure Sharpness, stating that for every system there exists at least one pure effect occurring with unit probability on some state. For theories satisfying our four axioms, we show a constructive algorithm for diagonalizing every given state. The diagonalization result allows us to formulate a majorization criterion that captures the convertibility of states in the operational resource theory of purity, where random reversible transformations are regarded as free operations
Microcanonical thermodynamics in general physical theories
Microcanonical thermodynamics studies the operations that can be performed on
systems with well-defined energy. So far, this approach has been applied to
classical and quantum systems. Here we extend it to arbitrary physical
theories, proposing two requirements for the development of a general
microcanonical framework. We then formulate three resource theories,
corresponding to three different sets of basic operations: i) random reversible
operations, resulting from reversible dynamics with fluctuating parameters, ii)
noisy operations, generated by the interaction with ancillas in the
microcanonical state, and iii) unital operations, defined as the operations
that preserve the microcanonical state. We focus our attention on a class of
physical theories, called sharp theories with purification, where these three
sets of operations exhibit remarkable properties. Firstly, each set is
contained into the next. Secondly, the convertibility of states by unital
operations is completely characterised by a majorisation criterion. Thirdly,
the three sets are equivalent in terms of state convertibility if and only if
the dynamics allowed by theory satisfy a suitable condition, which we call
unrestricted reversibility. Under this condition, we derive a duality between
the resource theories of microcanonical thermodynamics and the resource theory
of pure bipartite entanglement
Microcanonical thermodynamics in general physical theories
Microcanonical thermodynamics studies the operations that can be performed on systems with well-defined energy. So far, this approach has been applied to classical and quantum systems. Here we extend it to arbitrary physical theories, proposing two requirements for the development of a general microcanonical framework. We then formulate three resource theories, corresponding to three different sets of basic operations: i) random reversible operations, resulting from reversible dynamics with fluctuating parameters, ii) noisy operations, generated by the interaction with ancillas in the microcanonical state, and iii) unital operations, defined as the operations that preserve the microcanonical state. We focus our attention on a class of physical theories, called sharp theories with purification, where these three sets of operations exhibit remarkable properties. Firstly, each set is contained into the next. Secondly, the convertibility of states by unital operations is completely characterised by a majorisation criterion. Thirdly, the three sets are equivalent in terms of state convertibility if and only if the dynamics allowed by theory satisfy a suitable condition, which we call unrestricted reversibility. Under this condition, we derive a duality between the resource theories of microcanonical thermodynamics and the resource theory of pure bipartite entanglement