114 research outputs found

    Predictive biomarkers for checkpoint inhibitor-based immunotherapy: The Galectin-3 signature in NSCLCs

    Get PDF
    Checkpoint inhibitor-based immunotherapy is opening a promising scenario in oncology, with objective responses registered in multiple cancer types. However, reliable predictive markers of tumor responsiveness are still lacking. These markers need to be urgently identified for a better selection of patients that can be candidates for immunotherapy. In this pilot study, a cohort of 34 consecutive patients bearing programmed death-ligand 1 (PD-L1)-positive non-small cell lung carcinoma (NSCLC), treated with pembrolizumab, was considered. The retrospective immuno-phenotypic analysis performed on the original tumor biopsies allowed for the identification of a specific “galectin signature”, which strongly correlated with tumor responsiveness to anti PD-1 immunotherapy. We observed that the large majority of patients (about 90%) with high galectin-3 tumor expression (score 3+) showed an early and dramatic progression of the disease after three cycles of treatments. In contrast, all patients with negative or low/intermediate expression of galectin-3 in tumor cells showed an early and durable objective response to pembrolizumab, indicating galectin-3 as an interesting predictive marker of tumor responsiveness. The galectin-3 signature, at least in NSCLCs, promises a better selection of patient candidates for immunotherapy, reducing unnecessary treatment exposures and social costs. A large multicenter study is ongoing to validate this finding

    Compression and diffusion: a joint approach to detect complexity

    Full text link
    The adoption of the Kolmogorov-Sinai (KS) entropy is becoming a popular research tool among physicists, especially when applied to a dynamical system fitting the conditions of validity of the Pesin theorem. The study of time series that are a manifestation of system dynamics whose rules are either unknown or too complex for a mathematical treatment, is still a challenge since the KS entropy is not computable, in general, in that case. Here we present a plan of action based on the joint action of two procedures, both related to the KS entropy, but compatible with computer implementation through fast and efficient programs. The former procedure, called Compression Algorithm Sensitive To Regularity (CASToRe), establishes the amount of order by the numerical evaluation of algorithmic compressibility. The latter, called Complex Analysis of Sequences via Scaling AND Randomness Assessment (CASSANDRA), establishes the complexity degree through the numerical evaluation of the strength of an anomalous effect. This is the departure, of the diffusion process generated by the observed fluctuations, from ordinary Brownian motion. The CASSANDRA algorithm shares with CASToRe a connection with the Kolmogorov complexity. This makes both algorithms especially suitable to study the transition from dynamics to thermodynamics, and the case of non-stationary time series as well. The benefit of the joint action of these two methods is proven by the analysis of artificial sequences with the same main properties as the real time series to which the joint use of these two methods will be applied in future research work.Comment: 27 pages, 9 figure

    Scaling detection in time series: diffusion entropy analysis

    Full text link
    The methods currently used to determine the scaling exponent of a complex dynamic process described by a time series are based on the numerical evaluation of variance. This means that all of them can be safely applied only to the case where ordinary statistical properties hold true even if strange kinetics are involved. We illustrate a method of statistical analysis based on the Shannon entropy of the diffusion process generated by the time series, called Diffusion Entropy Analysis (DEA). We adopt artificial Gauss and L\'{e}vy time series, as prototypes of ordinary and anomalus statistics, respectively, and we analyse them with the DEA and four ordinary methods of analysis, some of which are very popular. We show that the DEA determines the correct scaling exponent even when the statistical properties, as well as the dynamic properties, are anomalous. The other four methods produce correct results in the Gauss case but fail to detect the correct scaling in the case of L\'{e}vy statistics.Comment: 21 pages,10 figures, 1 tabl

    Diffusion entropy and waiting time statistics of hard x-ray solar flares

    Full text link
    We analyze the waiting time distribution of time distances τ\tau between two nearest-neighbor flares. This analysis is based on the joint use of two distinct techniques. The first is the direct evaluation of the distribution function ψ(τ)\psi(\tau), or of the probability, Ψ(tau)\Psi(tau), that no time distance smaller than a given τ\tau is found. We adopt the paradigm of the inverse power law behavior, and we focus on the determination of the inverse power index μ\mu, without ruling out different asymptotic properties that might be revealed, at larger scales, with the help of richer statistics. The second technique, called Diffusion Entropy (DE) method, rests on the evaluation of the entropy of the diffusion process generated by the time series. The details of the diffusion process depend on three different walking rules, which determine the form and the time duration of the transition to the scaling regime, as well as the scaling parameter δ\delta. With the first two rules the information contained in the time series is transmitted, to a great extent, to the transition, as well as to the scaling regime. The same information is essentially conveyed, by using the third rules, into the scaling regime, which, in fact, emerges very quickly after a fast transition process. We show that the significant information hidden within the time series concerns memory induced by the solar cycle, as well as the power index μ\mu. The scaling parameter δ\delta becomes a simple function of μ\mu, when memory is annihilated. Thus, the three walking rules yield a unique and precise value of μ\mu if the memory is wisely taken under control, or cancelled by shuffling the data. All this makes compelling the conclusion that μ=2.138±0.01\mu = 2.138 \pm 0.01.Comment: 23 pages, 13 figure

    L\'{e}vy scaling: the Diffusion Entropy Analysis applied to DNA sequences

    Full text link
    We address the problem of the statistical analysis of a time series generated by complex dynamics with a new method: the Diffusion Entropy Analysis (DEA) (Fractals, {\bf 9}, 193 (2001)). This method is based on the evaluation of the Shannon entropy of the diffusion process generated by the time series imagined as a physical source of fluctuations, rather than on the measurement of the variance of this diffusion process, as done with the traditional methods. We compare the DEA to the traditional methods of scaling detection and we prove that the DEA is the only method that always yields the correct scaling value, if the scaling condition applies. Furthermore, DEA detects the real scaling of a time series without requiring any form of de-trending. We show that the joint use of DEA and variance method allows to assess whether a time series is characterized by L\'{e}vy or Gauss statistics. We apply the DEA to the study of DNA sequences, and we prove that their large-time scales are characterized by L\'{e}vy statistics, regardless of whether they are coding or non-coding sequences. We show that the DEA is a reliable technique and, at the same time, we use it to confirm the validity of the dynamic approach to the DNA sequences, proposed in earlier work.Comment: 24 pages, 9 figure

    Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate change

    Full text link
    The North Atlantic Oscillation (NAO) obtained using instrumental and documentary proxy predictors from Eurasia is found to be characterized by a quasi 60-year dominant oscillation since 1650. This pattern emerges clearly once the NAO record is time integrated to stress its comparison with the temperature record. The integrated NAO (INAO) is found to well correlate with the length of the day (since 1650) and the global surface sea temperature record HadSST2 and HadSST3 (since 1850). These findings suggest that INAO can be used as a good proxy for global climate change, and that a 60-year cycle exists in the global climate since at least 1700. Finally, the INAO ~60-year oscillation well correlates with the ~60- year oscillations found in the historical European aurora record since 1700, which suggests that this 60-year dominant climatic cycle has a solar-astronomical origin

    Memory beyond memory in heart beating: an efficient way to detect pathological conditions

    Full text link
    We study the long-range correlations of heartbeat fluctuations with the method of diffusion entropy. We show that this method of analysis yields a scaling parameter δ\delta that apparently conflicts with the direct evaluation of the distribution of times of sojourn in states with a given heartbeat frequency. The strength of the memory responsible for this discrepancy is given by a parameter ϵ2\epsilon^{2}, which is derived from real data. The distribution of patients in the (δ\delta, ϵ2\epsilon^{2})-plane yields a neat separation of the healthy from the congestive heart failure subjects.Comment: submitted to Physical Review Letters, 5 figure

    Solar Flare Intermittency and the Earth's Temperature Anomalies

    Full text link
    We argue that earth's short-term temperature anomalies and the solar flare intermittency are linked. The analysis is based upon the study of the scaling of both the spreading and the entropy of the diffusion generated by the fluctuations of the temperature time series. The joint use of these two methods evidences the presence of a L\'{e}vy component in the temporal persistence of the temperature data sets that corresponds to the one that would be induced by the solar flare intermittency. The mean monthly temperature datasets cover the period from 1856 to 2002.Comment: 4 pages, 5 figure

    Power-law persistence and trends in the atmosphere: A detailed study of long temperature records

    Full text link
    We use several variants of the detrended fluctuation analysis to study the appearance of long-term persistence in temperature records, obtained at 95 stations all over the globe. Our results basically confirm earlier studies. We find that the persistence, characterized by the correlation C(s) of temperature variations separated by s days, decays for large s as a power law, C(s) ~ s^(-gamma). For continental stations, including stations along the coastlines, we find that gamma is always close to 0.7. For stations on islands, we find that gamma ranges between 0.3 and 0.7, with a maximum at gamma = 0.4. This is consistent with earlier studies of the persistence in sea surface temperature records where gamma is close to 0.4. In all cases, the exponent gamma does not depend on the distance of the stations to the continental coastlines. By varying the degree of detrending in the fluctuation analysis we obtain also information about trends in the temperature records.Comment: 5 pages, 4 including eps figure

    Paradoxical psoriasis induced by Anti-TNFα treatment: Evaluation of disease-specific clinical and genetic markers

    Get PDF
    Paradoxical psoriasis (PP) may occur during treatment with anti-tumor necrosis factor-alpha (TNF-α) drugs in various chronic immune-mediated diseases, mainly inflammatory bowel diseases (IBD) and psoriasis. In this study, clinical and genetic characteristics of PP arising in IBD and psoriatic patients were investigated to identify disease-specific markers of the paradoxical effect. A total of 161 IBD and psoriatic patients treated with anti-TNF-α drugs were included in the study. Of these patients, 39 developed PP. All patients were characterized for the main clinical– pathologic characteristics and genotyped for six candidate single nucleotide polymorphisms (SNPs) selected for their possible role in PP susceptibility. In IBD patients, the onset of PP was associated with female sex, presence of comorbidities, and use of adalimumab. IBD patients with PP had a higher frequency of the TNF-α rs1799964 rare allele (p= 0.006) compared with cases without the paradoxical effect, and a lower frequency of the human leucocyte antigen (HLA)-Cw06 rs10484554 rare allele (p= 0.03) compared with psoriatic patients with PP. Overall, these findings point to specific clinical and genetic characteristics of IBD patients with PP and provide data showing that genetic variability may be related to the paradoxical effect of anti-TNF-α drugs with possible implications into clinical practice
    corecore