2 research outputs found

    Complex Network Tools to Understand the Behavior of Criminality in Urban Areas

    Full text link
    Complex networks are nowadays employed in several applications. Modeling urban street networks is one of them, and in particular to analyze criminal aspects of a city. Several research groups have focused on such application, but until now, there is a lack of a well-defined methodology for employing complex networks in a whole crime analysis process, i.e. from data preparation to a deep analysis of criminal communities. Furthermore, the "toolset" available for those works is not complete enough, also lacking techniques to maintain up-to-date, complete crime datasets and proper assessment measures. In this sense, we propose a threefold methodology for employing complex networks in the detection of highly criminal areas within a city. Our methodology comprises three tasks: (i) Mapping of Urban Crimes; (ii) Criminal Community Identification; and (iii) Crime Analysis. Moreover, it provides a proper set of assessment measures for analyzing intrinsic criminality of communities, especially when considering different crime types. We show our methodology by applying it to a real crime dataset from the city of San Francisco - CA, USA. The results confirm its effectiveness to identify and analyze high criminality areas within a city. Hence, our contributions provide a basis for further developments on complex networks applied to crime analysis.Comment: 7 pages, 2 figures, 14th International Conference on Information Technology : New Generation

    Physical Data Warehouse Design on NoSQL Databases - OLAP Query Processing over HBase

    No full text
    Nowadays, data warehousing and online analytical processing (OLAP) are core technologies in business intelligence and therefore have drawn much interest by researchers in the last decade. However, these technologies have been mainly developed for relational database systems in centralized environments. In other words, these technologies have not been designed to be applied in scalable systems such as NoSQL databases. Adapting a data warehousing environment to NoSQL databases introduces several advantages, such as scalability and flexibility. This paper investigates three physical data warehouse designs to adapt the Star Schema Benchmark for its use in NoSQL databases. In particular, our main investigation refers to the OLAP query processing over column-oriented databases using the MapReduce framework. We analyze the impact of distributing attributes among column-families in HBase on the OLAP query performance. Our experiments showed how processing time of OLAP queries was impacted by a physical data warehouse design regarding the number of dimensions accessed and the data volume. We conclude that using distinct distributions of attributes among column-families can improve OLAP query performance in HBase and consequently make the benchmark more suitable for OLAP over NoSQL databases.FAPESP (Grant: 2014/12233-2)FINEPCAPESCNP
    corecore