7 research outputs found

    Membrane gas separation module with pulsed retentate for low-permeable component recovery

    No full text
    The paper presents the experimentalstudy of a novel unsteady-statemembrane gas separation approachfor recovery of a slow-permeant component in the membrane module with periodical retentate with-drawals. The case study consisted in the separation of binary test mixtures based on the fast-permeantmain component (N2O, C2H2) and the slow-permeant impurity (1% vol. of N2)using a radial counter-current membrane module. The novel semi-batch withdrawal technique was shown to intensify theseparation process and provide up to 40% increase in separation efficiency compared to a steady-stateoperation of the same productivity

    Synthesis and Study of Gas Transport Properties of Polymers Based on Macroinitiators and 2,4-Toluene Diisocyanate

    No full text
    Nowadays, block copolymers hold great promise for the design of novel membranes to be applied for the membrane gas separation. In this regard, microporous block copolymers based on a macroinitiator with an anionic nature, such as potassium-substituted block copolymers of propylene oxide and ethylene oxide (PPEG) and 2,4-toluene diisocyanate (TDI), were obtained and investigated as effective gas separation membranes. The key element of the macromolecular structure that determines the supramolecular organization of the studied polymers is the coplanar blocks of polyisocyanates with an acetal nature (O-polyisocyanate). In the present research, the influence of the content of peripheral polyoxyethylene (POE) blocks in PPEG on the supramolecular structure processes and gas transport characteristics of the obtained polymers based on PPEG and TDI was investigated. According to the study of polymers if the POE block content is 15 wt %, the polyoxypropylene segments are located in the internal cavity of voids formed by O-polyisocyanate blocks. When the POE block content is 30 wt %, the flexible chain component forms its own microphase outside the segregation zone of the rigid O-polyisocyanate blocks. The permeability for polar molecules, such as ammonia or hydrogen sulfide, significantly exceeds the permeability values obtained for non-polar molecules He, N2 and CH4. A relatively high permeability is also observed for carbon dioxide. At the same time, the content of POE blocks has a small effect on the permeability for all studied gases. The diffusion coefficient increases with an increase in the POE block content in PPEG for all studied gases

    Preparation and Characterization of Facilitated Transport Membranes Composed of Chitosan-Styrene and Chitosan-Acrylonitrile Copolymers Modified by Methylimidazolium Based Ionic Liquids for CO2 Separation from CH4 and N2

    No full text
    CO2 separation was found to be facilitated by transport membranes based on novel chitosan (CS)–poly(styrene) (PS) and chitosan (CS)–poly(acrylonitrile) (PAN) copolymer matrices doped with methylimidazolium based ionic liquids: [bmim][BF4], [bmim][PF6], and [bmim][Tf2N] (IL). CS plays the role of biodegradable film former and selectivity promoter. Copolymers were prepared implementing the latest achievements in radical copolymerization with chosen monomers, which enabled the achievement of outstanding mechanical strength values for the CS-based membranes (75–104 MPa for CS-PAN and 69–75 MPa for CS-PS). Ionic liquid (IL) doping affected the surface and mechanical properties of the membranes as well as the gas separation properties. The highest CO2 permeability 400 Barrers belongs to CS-b-PS/[bmim][BF4]. The highest selectivity α (CO2/N2) = 15.5 was achieved for CS-b-PAN/[bmim][BF4]. The operational temperature of the membranes is under 220 °C

    The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes

    No full text
    Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested for He, N2, NH3, H2S, and CO2 gas separation and ideal selectivities were calculated. The high values of ideal selectivity for ammonia-based systems with permanent gases were observed on polymer matrixes immobilized with [bmim][PF6] and [emim][Tf2N]. The modification of SILMs by nanosize silica particles leads to an increase of NH3 separation relatively to CO2 or H2S

    The Cation Effect on the Free Volume and the Solubility of H<sub>2</sub>S and CO<sub>2</sub> in Ionic Liquids Based on Bis(2-Ethylhexyl) Sulfosuccinate Anion

    No full text
    Herein, we report for the first time a study dedicated to acidic gases’ solubility in ionic liquids with sterically hindered bulky anion, namely bis(2-ethylhexyl) sulfosuccinate ([doc]), experimentally evaluated at low pressures. The effect of cation change (imidazolium, pyridinium, and pyrrolidinium) on the thermophysical properties and sorption capacities was also discussed. The densities and the activation energies of the tested ILs exhibited minor differences. Furthermore, the COSMO-RS model was used to predict the free volumes of ILs aiming to investigate its influence on gas solubilities. The conducted calculations have revealed an antibate correlation between the fractional free volume (FFV) and Henry’s law constant. In particular, the lowest FFV in 1-methylimidazolium [doc] corresponded to the minimal sorption and vice versa. In addition, it was shown that the presence of protic cation results in a significant reduction in CO2 and H2S solubilities. In general, the solubility measurement results of the synthesized ILs have shown their superiority compared to fluorinated ILs based on the physical absorption mechanism

    Rhizobia Isolated from the Relict Legume Vavilovia formosa Represent a Genetically Specific Group within Rhizobium leguminosarum biovar viciae

    No full text
    Twenty-two rhizobia strains isolated from three distinct populations (North Ossetia, Dagestan, and Armenia) of a relict legume Vavilovia formosa were analysed to determine their position within Rhizobium leguminosarum biovar viciae (Rlv). These bacteria are described as symbionts of four plant genera Pisum, Vicia, Lathyrus, and Lens from the Fabeae tribe, of which Vavilovia is considered to be closest to its last common ancestor (LCA). In contrast to biovar viciae, bacteria from Rhizobium leguminosarum biovar trifolii (Rlt) inoculate plants from the Trifolieae tribe. Comparison of house-keeping (hkg: 16S rRNA, glnII, gltA, and dnaK) and symbiotic (sym: nodA, nodC, nodD, and nifH) genes of the symbionts of V. formosa with those of other Rlv and Rlt strains reveals a significant group separation, which was most pronounced for sym genes. A remarkable feature of the strains isolated from V. formosa was the presence of the nodX gene, which was commonly found in Rlv strains isolated from Afghanistan pea genotypes. Tube testing of different strains on nine plant species, including all genera from the Fabeae tribe, demonstrated that the strains from V. formosa nodulated the same cross inoculation group as the other Rlv strains. Comparison of nucleotide similarity in sym genes suggested that their diversification within sym-biotypes of Rlv was elicited by host plants. Contrariwise, that of hkg genes could be caused by either local adaptation to soil niches or by genetic drift. Long-term ecological isolation, genetic separation, and the ancestral position of V. formosa suggested that symbionts of V. formosa could be responsible for preserving ancestral genotypes of the Rlv biovar
    corecore