5 research outputs found

    An Improved Version of ETS-Regression Models in Calculating the Fixed Offshore Platform Responses

    No full text
    An offshore structural design should accurately calculate wave loads and structural responses acting on slender cylinders. The hydrodynamic drag-dominated force was always challenging, hence the hydrodynamic wave loading became a complex solution; it led to a nonlinear relation between the wave force and responses caused by the diffracted and radiated waves, which was included in Morison’s equation. For more consistency in the structural assessment, the linearised drag–inertia force was considered in model development, such as an improved version of the efficient time simulation regression (ETS-Reg) procedure that was introduced. The study aimed to improve the prediction of structural responses using the predetermined linear, polynomial, and cubic regression models. These simulations were performed focusing on high sea state conditions without wave-induced current effects. In order to evaluate the level of accuracy, the recent ETS-Reg models were compared and validated using the Monte Carlo time simulation (MCTS) method. An amended ETS-Reg model, known as the ETS-RegLR model, was also compared with the previous results obtained using the conventional ETS-Reg models (ETS-RegSE), leading to better structural response calculations

    Comparison of Various Spectral Models for the Prediction of the 100-Year Design Wave Height

    No full text
    Offshore structures are exposed to random wave loading in the ocean environment, and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. In most cases, the dominant load on offshore structures is due to wind-generated random waves where the ocean surface elevation is defined using appropriate ocean wave energy spectra. Several spectral models have been proposed to describe a particular sea state that is used in the design of offshore structures. These models are derived from analysis of observed ocean waves and are thus empirical in nature. The spectral models popular in the offshore industry include Pierson-Moskowitz spectrum and JONSWAP spectrum. While the offshore industry recognizes that different methods of simulating ocean surface elevation lead to different estimation of design wave height, no systematic investigation has been conducted. Hence, the aim of this study is to investigate the effects of predicting the 100-year responses from various wave spectrum models. In this paper, the Monte Carlo time simulation (MCTS) procedure has been used to compare the magnitude of the 100-year extreme responses derived from different spectral models. Additionally, the linear random wave theory (LRWT) was implemented to simulate the offshore structural responses due to random wave loading. The models have been tested for three different environmental conditions represented by Hs = 15m, 10m and 5m respectively. The accuracy of the predictions of the 100-year responses from Pierson-Moskowitz and JONSWAP spectrums will then be investigated

    Comparison of Various Spectral Models for the Prediction of the 100-Year Design Wave Height

    No full text
    Offshore structures are exposed to random wave loading in the ocean environment, and hence the probability distribution of the extreme values of their response to wave loading is required for their safe and economical design. In most cases, the dominant load on offshore structures is due to wind-generated random waves where the ocean surface elevation is defined using appropriate ocean wave energy spectra. Several spectral models have been proposed to describe a particular sea state that is used in the design of offshore structures. These models are derived from analysis of observed ocean waves and are thus empirical in nature. The spectral models popular in the offshore industry include Pierson-Moskowitz spectrum and JONSWAP spectrum. While the offshore industry recognizes that different methods of simulating ocean surface elevation lead to different estimation of design wave height, no systematic investigation has been conducted. Hence, the aim of this study is to investigate the effects of predicting the 100-year responses from various wave spectrum models. In this paper, the Monte Carlo time simulation (MCTS) procedure has been used to compare the magnitude of the 100-year extreme responses derived from different spectral models. Additionally, the linear random wave theory (LRWT) was implemented to simulate the offshore structural responses due to random wave loading. The models have been tested for three different environmental conditions represented by Hs = 15m, 10m and 5m respectively. The accuracy of the predictions of the 100-year responses from Pierson-Moskowitz and JONSWAP spectrums will then be investigated

    An Improved Version of ETS-Regression Models in Calculating the Fixed Offshore Platform Responses

    No full text
    An offshore structural design should accurately calculate wave loads and structural responses acting on slender cylinders. The hydrodynamic drag-dominated force was always challenging, hence the hydrodynamic wave loading became a complex solution; it led to a nonlinear relation between the wave force and responses caused by the diffracted and radiated waves, which was included in Morison’s equation. For more consistency in the structural assessment, the linearised drag–inertia force was considered in model development, such as an improved version of the efficient time simulation regression (ETS-Reg) procedure that was introduced. The study aimed to improve the prediction of structural responses using the predetermined linear, polynomial, and cubic regression models. These simulations were performed focusing on high sea state conditions without wave-induced current effects. In order to evaluate the level of accuracy, the recent ETS-Reg models were compared and validated using the Monte Carlo time simulation (MCTS) method. An amended ETS-Reg model, known as the ETS-RegLR model, was also compared with the previous results obtained using the conventional ETS-Reg models (ETS-RegSE), leading to better structural response calculations

    Application of Artificial Intelligence in Marine Corrosion Prediction and Detection

    No full text
    One of the biggest problems the maritime industry is currently experiencing is corrosion, resulting in short and long-term damages. Early prediction and proper corrosion monitoring can reduce economic losses. Traditional approaches used in corrosion prediction and detection are time-consuming and challenging to execute in inaccessible areas. Due to these reasons, artificial intelligence-based algorithms have become the most popular tools for researchers. This study discusses state-of-the-art artificial intelligence (AI) methods for marine-related corrosion prediction and detection: (1) predictive maintenance approaches and (2) computer vision and image processing approaches. Furthermore, a brief description of AI is described. The outcomes of this review will bring forward new knowledge about AI and the development of prediction models which can avoid unexpected failures during corrosion detection and maintenance. Moreover, it will expand the understanding of computer vision and image processing approaches for accurately detecting corrosion in images and videos
    corecore