85 research outputs found

    A specific targeting signal directs Runx2/Cbfa1 to subnuclear domains and contributes to transactivation of the osteocalcin gene

    Get PDF
    Key components of DNA replication and the basal transcriptional machinery as well as several tissue-specific transcription factors are compartmentalized in specialized nuclear domains. In the present study, we show that determinants of subnuclear targeting of the bone-related Runx2/Cbfa1 protein reside in the C-terminus. With a panel of C-terminal mutations, we further demonstrate that targeting of Runx2 to discrete subnuclear foci is mediated by a 38 amino acid sequence (aa 397-434). This nuclear matrix-targeting signal (NMTS) directs the heterologous Gal4 protein to nuclear-matrix-associated Runx2 foci and enhances transactivation of a luciferase gene controlled by Gal4 binding sites. Importantly, we show that targeting of Runx2 to the NM-associated foci contributes to transactivation of the osteoblast-specific osteocalcin gene in osseous cells. Taken together, these findings identify a critical component of the mechanisms mediating Runx2 targeting to subnuclear foci and provide functional linkage between subnuclear organization of Runx2 and bone-specific transcriptional control

    Quantitative signature for architectural organization of regulatory factors using intranuclear informatics

    Get PDF
    Regulatory machinery for replication and gene expression is punctately organized in supramolecular complexes that are compartmentalized in nuclear microenvironments. Quantitative approaches are required to understand the assembly of regulatory machinery within the context of nuclear architecture and to provide a mechanistic link with biological control. We have developed \u27intranuclear informatics\u27 to quantify functionally relevant parameters of spatially organized nuclear domains. Using this informatics strategy we have characterized post-mitotic reestablishment of focal subnuclear organization of Runx (AML/Cbfa) transcription factors in progeny cells. By analyzing point mutations that abrogate fidelity of Runx intranuclear targeting, we establish molecular determinants for the spatial order of Runx domains. Our novel approach provides evidence that architectural organization of Runx factors may be fundamental to their tissue-specific regulatory function

    Transient RUNX1 Expression during Early Mesendodermal Differentiation of hESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling

    Get PDF
    The transition of human embryonic stem cells (hESCs) from pluripotency to lineage commitment is not fully understood, and a role for phenotypic transcription factors in the initial stages of hESC differentiation remains to be explored. From a screen of candidate factors, we found that RUNX1 is selectively and transiently upregulated early in hESC differentiation to mesendodermal lineages. Transcriptome profiling and functional analyses upon RUNX1 depletion established a role for RUNX1 in promoting cell motility. In parallel, we discovered a loss of repression for several epithelial genes, indicating that loss of RUNX1 impaired an epithelial to mesenchymal transition during differentiation. Cell biological and biochemical approaches revealed that RUNX1 depletion specifically compromised TGFB2 signaling. Both the decrease in motility and deregulated epithelial marker expression upon RUNX1 depletion were rescued by reintroduction of TGFB2, but not TGFB1. These findings identify roles for RUNX1-TGFB2 signaling in early events of mesendodermal lineage commitment

    The leukemogenic t(8;21) fusion protein AML1-ETO controls rRNA genes and associates with nucleolar-organizing regions at mitotic chromosomes

    Get PDF
    RUNX1/AML1 is required for definitive hematopoiesis and is frequently targeted by chromosomal translocations in acute myeloid leukemia (AML). The t(8;21)-related AML1-ETO fusion protein blocks differentiation of myeloid progenitors. Here, we show by immunofluorescence microscopy that during interphase, endogenous AML1-ETO localizes to nuclear microenvironments distinct from those containing native RUNX1/AML1 protein. At mitosis, we clearly detect binding of AML1-ETO to nucleolar-organizing regions in AML-derived Kasumi-1 cells and binding of RUNX1/AML1 to the same regions in Jurkat cells. Both RUNX1/AML1 and AML1-ETO occupy ribosomal DNA repeats during interphase, as well as interact with the endogenous RNA Pol I transcription factor UBF1. Promoter cytosine methylation analysis indicates that RUNX1/AML1 binds to rDNA repeats that are more highly CpG methylated than those bound by AML1-ETO. Downregulation by RNA interference reveals that RUNX1/AML1 negatively regulates rDNA transcription, whereas AML1-ETO is a positive regulator in Kasumi-1 cells. Taken together, our findings identify a novel role for the leukemia-related AML1-ETO protein in epigenetic control of cell growth through upregulation of ribosomal gene transcription mediated by RNA Pol I, consistent with the hyper-proliferative phenotype of myeloid cells in AML patients

    Intranuclear trafficking: organization and assembly of regulatory machinery for combinatorial biological control

    Get PDF
    The molecular logistics of nuclear regulatory processes necessitate temporal and spatial regulation of protein-protein and protein-DNA interactions in response to physiological cues. Biochemical, in situ, and in vivo genetic evidence demonstrates the requirement for intranuclear localization of regulatory complexes that functionally couple cellular responses to signals that mediate combinatorial control of gene expression. We have summarized evidence that subnuclear targeting of transcription factors mechanistically links gene expression with architectural organization and assembly of nuclear regulatory machinery for biological control. The compromised intranuclear targeting of regulatory proteins under pathological conditions provides options for the diagnosis and treatment of disease

    Nuclear microenvironments: an architectural platform for the convergence and integration of transcriptional regulatory signals

    Get PDF
    Functional interrelationships between the intranuclear organization of nucleic acids and regulatory proteins are obligatory for fidelity of transcriptional activation and repression. In this article, using the Runx/AML/Cbfa transcription factors as a paradigm for linkage between nuclear structure and gene expression we present an overview of growing insight into the dynamic organization and assembly of regulatory machinery for gene expression at microenvironments within the nucleus. We address contributions of nuclear microenvironments to the convergence and integration of regulatory signals that mediate transcription by supporting the combinatorial assembly of regulatory complexes

    Bivalent Epigenetic Control of Oncofetal Gene Expression in Cancer

    Get PDF
    Multiple mechanisms of epigenetic control that include DNA methylation, histone modification, noncoding RNAs, and mitotic gene bookmarking play pivotal roles in stringent gene regulation during lineage commitment and maintenance. Experimental evidence indicates that bivalent chromatin domains, i.e., genome regions that are marked by both H3K4me3 (activating) and H3K27me3 (repressive) histone modifications, are a key property of pluripotent stem cells. Bivalency of developmental genes during the G1 phase of the pluripotent stem cell cycle contributes to cell fate decisions. Recently, some cancer types have been shown to exhibit partial recapitulation of bivalent chromatin modifications that are lost along with pluripotency, suggesting a mechanism by which cancer cells reacquire properties that are characteristic of undifferentiated, multipotent cells. This bivalent epigenetic control of oncofetal gene expression in cancer cells may offer novel insights into the onset and progression of cancer and may provide specific and selective options for diagnosis as well as for therapeutic intervention

    Abstracts from the 3rd International Genomic Medicine Conference (3rd IGMC 2015)

    Get PDF

    Nuclear microenvironments and cancer

    No full text
    Nucleic acids and regulatory proteins are architecturally organized in nuclear microenvironments. The compartmentalization of regulatory machinery for gene expression, replication and repair, is obligatory for fidelity of biological control. Perturbations in the organization, assembly and integration of regulatory machinery have been functionally linked to the onset and progression of tumorigenesis. The combined application of cellular, molecular, biochemical and in vivo genetic approaches, together with structural biology, genomics, proteomics and bioinformatics, will likely lead to new approaches in cancer diagnostics and therapy

    Transient RUNX1 Expression during Early Mesendodermal Differentiation of hESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling

    Get PDF
    The transition of human embryonic stem cells (hESCs) from pluripotency to lineage commitment is not fully understood, and a role for phenotypic transcription factors in the initial stages of hESC differentiation remains to be explored. From a screen of candidate factors, we found that RUNX1 is selectively and transiently upregulated early in hESC differentiation to mesendodermal lineages. Transcriptome profiling and functional analyses upon RUNX1 depletion established a role for RUNX1 in promoting cell motility. In parallel, we discovered a loss of repression for several epithelial genes, indicating that loss of RUNX1 impaired an epithelial to mesenchymal transition during differentiation. Cell biological and biochemical approaches revealed that RUNX1 depletion specifically compromised TGFB2 signaling. Both the decrease in motility and deregulated epithelial marker expression upon RUNX1 depletion were rescued by reintroduction of TGFB2, but not TGFB1. These findings identify roles for RUNX1-TGFB2 signaling in early events of mesendodermal lineage commitment
    • 

    corecore