24 research outputs found

    Axonal projections of Renshaw cells in the thoracic spinal cord

    Get PDF
    Renshaw cells are widely distributed in all segments of the spinal cord, but detailed morphological studies of these cells and their axonal branching patterns have only been made for lumbosacral segments. For these, a characteristic distribution of terminals was reported, including extensive collateralization within 1-2 mm of the soma, but then more restricted collaterals given off at intervals from the funicular axon. Previous authors have suggested that the projections close to the soma serve inhibition of motoneurons (known to be greatest for the motor nuclei providing the Renshaw cell excitation) but that the distant projections serve mainly the inhibition of other neurons. However, in thoracic segments, inhibition of motoneurons is known to occur over two to three segments (20-40 mm) from the presumed somatic locations of the Renshaw cells. Here, we report the first detailed morphological study of Renshaw cell axons outside the lumbosacral segments, which investigated whether this different distribution of motoneuron inhibition is reflected in a different pattern of Renshaw cell terminations. Four Renshaw cells in T7 or T8 segments were intracellularly labeled with neurobiotin in anesthetized cats and their axons traced for distances ≥6 mm from the somata. The only morphological difference detected within this distance in comparison with Renshaw cells in the lumbosacral cord was a minimal taper in the funicular axons, where in the lumbosacral cord this is pronounced. Patterns of termination were virtually identical to those in the lumbosacral segments, so we conclude that these patterns are unrelated to the pattern of motoneuronal inhibition

    Integration of water, sanitation, and hygiene for the prevention and control of neglected tropical diseases: a rationale for inter-sectoral collaboration.

    Get PDF
    Improvements of water, sanitation, and hygiene (WASH) infrastructure and appropriate health-seeking behavior are necessary for achieving sustained control, elimination, or eradication of many neglected tropical diseases (NTDs). Indeed, the global strategies to fight NTDs include provision of WASH, but few programs have specific WASH targets and approaches. Collaboration between disease control programs and stakeholders in WASH is a critical next step. A group of stakeholders from the NTD control, child health, and WASH sectors convened in late 2012 to discuss opportunities for, and barriers to, collaboration. The group agreed on a common vision, namely "Disease-free communities that have adequate and equitable access to water and sanitation, and that practice good hygiene." Four key areas of collaboration were identified, including (i) advocacy, policy, and communication; (ii) capacity building and training; (iii) mapping, data collection, and monitoring; and (iv) research. We discuss strategic opportunities and ways forward for enhanced collaboration between the WASH and the NTD sectors

    Supramolecular nesting of cyclic polymers

    Get PDF
    Advances in template-directed synthesis make it possible to create artificial molecules with protein-like dimensions, directly from simple components. These synthetic macromolecules have a proclivity for self-organization that is reminiscent of biopolymers. Here, we report the synthesis of monodisperse cyclic porphyrin polymers, with diameters of up to 21 nm (750 C–C bonds). The ratio of the intrinsic viscosities for cyclic and linear topologies is 0.72, indicating that these polymers behave as almost ideal flexible chains in solution. When deposited on ​gold surfaces, the cyclic polymers display a new mode of two-dimensional supramolecular organization, combining encapsulation and nesting; one nanoring adopts a near-circular conformation, thus allowing a second nanoring to be captured within its perimeter, in a tightly folded conformation. Scanning tunnelling microscopy reveals that nesting occurs in combination with stacking when nanorings are deposited under vacuum, whereas when they are deposited directly from solution under ambient conditions there is stacking or nesting, but not a combination of both

    Electrophysiological and Morphological Characterization of Propriospinal Interneurons in the Thoracic Spinal Cord

    Full text link
    Propriospinal interneurons in the thoracic spinal cord have vital roles not only in controlling respiratory and trunk muscles, but also in providing possible substrates for recovery from spinal cord injury. Intracellular recordings were made from such interneurons in anesthetized cats under neuromuscular blockade and with the respiratory drive stimulated by inhaled CO2. The majority of the interneurons were shown by antidromic activation to have axons descending for at least two to four segments, mostly contralateral to the soma. In all, 81% of the neurons showed postsynaptic potentials (PSPs) to stimulation of intercostal or dorsal ramus nerves of the same segment for low-threshold (≤5T) afferents. A monosynaptic component was present for the majority of the peripherally evoked excitatory PSPs. A central respiratory drive potential was present in most of the recordings, usually of small amplitude. Neurons depolarized in either inspiration or expiration, sometimes variably. The morphology of 17 of the interneurons and/or of their axons was studied following intracellular injection of Neurobiotin; 14 axons were descending, 6 with an additional ascending branch, and 3 were ascending (perhaps actually representing ascending tract cells); 15 axons were crossed, 2 ipsilateral, none bilateral. Collaterals were identified for 13 axons, showing exclusively unilateral projections. The collaterals were widely spaced and their terminations showed a variety of restricted locations in the ventral horn or intermediate area. Despite heterogeneity in detail, both physiological and morphological, which suggests heterogeneity of function, the projections mostly fitted a consistent general pattern: crossed axons, with locally weak, but widely distributed terminations
    corecore