4 research outputs found

    Efficacy of Caltropis procera and Ficus sycomorus extracts in treating MRSA (methicillin-resistant Staphylococcus aureus)-keratitis in rabbit

    Get PDF
    MRSA-induced keratitis in rabbit was used to evaluate the therapeutic effect of F. sycomorus leaves and C. procera latex extracts. Within the 6 rabbit groups tested, group 1 received sterilized saline, while other groups (2 to 6) received 100 μl of intrastromal injections of 1.5×103 colony forming unit (cfu) ml-1 of methicillin-resistant Staphylococcus aureus (MRSA). After 12 hours, groups 3 to 6 also received chloramphenicol, aqueous extract of C. procera latex, aqueous and alcoholic extracts of F. sycomorus leaves, respectively 3 times daily for 12 successive days. The tested extracts inhibited MRSA growth in vitro (i.e. on culture medium). Colony counts in cornea discs from groups 3 to 6 were significantly reduced (P ≤ 0.001) compared to group 2 (untreated). Clinical signs of keratitis were observed on group 2 until the end of experiment. In groups 3 to 6, gradual recovery was observed and signs disappeared by the 12th DPI (days post inoculation). Only mild symptoms persisted in group 5 (aqueous extract of leaves). In group 3 and 5, cornea, iris, ciliary body and conjunctiva showed mild leukocytic infiltration and depigmentation of melanin cells while recovery of cornea and iris was observed in groups 4 and 6. In conclusion, the used extracts have potential therapeutic effects on MRSA-induced keratitis in rabbit

    Complete genome sequence of Mycobacterium sp. MS1601, a bacterium performing selective oxidation of polyols

    No full text
    Corynebacterium sp. (ATCC 21245) is reclassified here as Mycobacterium sp. MS1601 based on 16S rRNA gene and complete-genome sequence analysis. It is able to oxidize branched polyols to corresponding hydroxycarboxylic acids. The total size of the genome sequence was 6,829,132 bp, including one circular chromosome of 6,407,860 bp

    Enhanced selective oxidation of trimethylolpropane to 2,2-bis(hydroxymethyl)butyric acid using Corynebacterium sp. ATCC 21245

    No full text
    2,2-Bis(hydroxymethyl)butyric acid (BHMB) is an important multifunctional chemical for the emerging bio-based polymer industry. It can be produced from trimethylolpropane (TMP) by selective oxidation using growing cells of Corynebacterium sp. ATCC 21245. However, this process is limited by the low volumetric productivity and low concentration of the final product. In the present study, we performed sequential batch operation with cell recycling in media containing glycerol, acetic acid, and increasing concentrations of yeast extract. This approach enhanced the conversion of 10 and 15g/L TMP to 11.0 and 16.3g/L BHMB at rates of 0.50 and 0.20g/L.h, respectively. Applying a cell bleeding strategy resulted in an overall 10-fold improvement in productivity. The consequently prolonged biocatalyst viability resulted in a quantitative conversion of 20g/L TMP to 22.3g/L BHMB and a yield of 1.10gBHMB/gTMP (100% molar yield). This work facilitates further studies of the selective oxidation on other industrially important polyols

    Selective oxidation of trimethylolpropane to 2,2-bis(hydroxymethyl)butyric acid using growing cells of Corynebacterium sp. ATCC 21245.

    No full text
    Multifunctional chemicals including hydroxycarboxylic acids are gaining increasing interest due to their growing applications in the polymer industry. One approach for their production is a biological selective oxidation of polyols, which is difficult to achieve by conventional chemical catalysis. In the present study, trimethylolpropane (TMP), a trihydric alcohol, was subjected to selective oxidation using growing cells of Corynebacterium sp. ATCC 21245as a biocatalyst and yielding the dihydroxy-monocarboxylic acid, 2,2-bis(hydroxymethyl)butyric acid (BHMB). The study revealed that co-substrates are crucial for this reaction. Among the different evaluated co-substrates, a mixture of glucose, xylose and acetate at a ratio of 5:5:2 was found optimum. The optimal conditions for biotransformation were pH 8, 1v/v/m airflow and 500rpm stirring speed. In batch mode of operation, 70.6% of 5g/l TMP was converted to BHMB in 10 days. For recovery of the product the adsorption pattern of BHMB to the anion exchange resin, Ambersep(®)900 (OH(-)), was investigated in batch and column experiments giving maximum static and dynamic binding capacities of 135 and 144mg/g resin, respectively. BHMB was separated with 89.7% of recovery yield from the fermentation broth. The approach is applicable for selective oxidation of other highly branched polyols by biotransformation
    corecore