1,075 research outputs found
Multidimensional Membership Mixture Models
We present the multidimensional membership mixture (M3) models where every
dimension of the membership represents an independent mixture model and each
data point is generated from the selected mixture components jointly. This is
helpful when the data has a certain shared structure. For example, three unique
means and three unique variances can effectively form a Gaussian mixture model
with nine components, while requiring only six parameters to fully describe it.
In this paper, we present three instantiations of M3 models (together with the
learning and inference algorithms): infinite, finite, and hybrid, depending on
whether the number of mixtures is fixed or not. They are built upon Dirichlet
process mixture models, latent Dirichlet allocation, and a combination
respectively. We then consider two applications: topic modeling and learning 3D
object arrangements. Our experiments show that our M3 models achieve better
performance using fewer topics than many classic topic models. We also observe
that topics from the different dimensions of M3 models are meaningful and
orthogonal to each other.Comment: 9 pages, 7 figure
Learning to Represent Haptic Feedback for Partially-Observable Tasks
The sense of touch, being the earliest sensory system to develop in a human
body [1], plays a critical part of our daily interaction with the environment.
In order to successfully complete a task, many manipulation interactions
require incorporating haptic feedback. However, manually designing a feedback
mechanism can be extremely challenging. In this work, we consider manipulation
tasks that need to incorporate tactile sensor feedback in order to modify a
provided nominal plan. To incorporate partial observation, we present a new
framework that models the task as a partially observable Markov decision
process (POMDP) and learns an appropriate representation of haptic feedback
which can serve as the state for a POMDP model. The model, that is parametrized
by deep recurrent neural networks, utilizes variational Bayes methods to
optimize the approximate posterior. Finally, we build on deep Q-learning to be
able to select the optimal action in each state without access to a simulator.
We test our model on a PR2 robot for multiple tasks of turning a knob until it
clicks.Comment: IEEE International Conference on Robotics and Automation (ICRA), 201
- …