16 research outputs found

    Learning an atlas of a cognitive process in its functional geometry

    Get PDF
    Proceedings of the 22nd International Conference, IPMI 2011, Kloster Irsee, Germany, July 3-8, 2011.In this paper we construct an atlas that captures functional characteristics of a cognitive process from a population of individuals. The functional connectivity is encoded in a low-dimensional embedding space derived from a diffusion process on a graph that represents correlations of fMRI time courses. The atlas is represented by a common prior distribution for the embedded fMRI signals of all subjects. The atlas is not directly coupled to the anatomical space, and can represent functional networks that are variable in their spatial distribution. We derive an algorithm for fitting this generative model to the observed data in a population. Our results in a language fMRI study demonstrate that the method identifies coherent and functionally equivalent regions across subjects.National Science Foundation (U.S.) (IIS/CRCNS 0904625)National Science Foundation (U.S.) (CAREER grant 0642971)National Institutes of Health (U.S.) (NCRR NAC P41- RR13218)National Institute of Biomedical Imaging and Bioengineering (U.S.) (U54-EB005149)National Institutes of Health (U.S.) (U41RR019703)National Institutes of Health (U.S.) (P01CA067165)Seventh Framework Programme (European Commission) (n◦257528 (KHRESMOI)

    Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex

    No full text
    fundamental and largely unanswered question in neuroscience is whether extrinsic connectivity and function are closely related at a fine spatial grain across the human brain. Using a novel approach, we found that the anatomical connectivity of individual gray-matter voxels (determined via diffusion-weighted imaging) alone can predict functional magnetic resonance imaging (fMRI) responses to 4 visual categories (faces, objects, scenes, and bodies) in individual subjects, thus accounting for both functional differentiation across the cortex and individual variation therein. Furthermore, this approach identified the particular anatomical links between voxels that most strongly predict, and therefore plausibly define, the neural networks underlying specific functions. These results provide the strongest evidence to date for a precise and fine-grained relationship between connectivity and function in the human brain, raise the possibility that early-developing connectivity patterns may determine later functional organization, and offer a method for predicting fine-grained functional organization in populations who cannot be functionally scanne
    corecore