2,645 research outputs found

    Hubbard Model with Luscher fermions - a progress report

    Full text link
    Some modifications of the Luscher algorithm, which reduce the autocorelation time, are proposed and tested.Comment: 3 pages, uuencoded gzipped Postscript, contribution to Lattice 9

    Hubbard Model with Luscher fermions

    Full text link
    First applications of the new algorithm simulating dynamical fermions are reported. The method reproduces previous results obtained with different techniques.Comment: talk presented at the XII International Symposium LATTICE94, Bielefeld, Germany, September 1994, to appear in the Proceedings. 3 pages, LATEX, required Elsevier espcrc2.sty style file is attached at the end of this LATEX text. Postscript figures included in the latex document with the epsf facilit

    Cubic anisotropy in high homogeneity thin (Ga,Mn)As layers

    Full text link
    Historically, comprehensive studies of dilute ferromagnetic semiconductors, e.g., pp-type (Cd,Mn)Te and (Ga,Mn)As, paved the way for a quantitative theoretical description of effects associated with spin-orbit interactions in solids, such as crystalline magnetic anisotropy. In particular, the theory was successful in explaining {\em uniaxial} magnetic anisotropies associated with biaxial strain and non-random formation of magnetic dimers in epitaxial (Ga,Mn)As layers. However, the situation appears much less settled in the case of the {\em cubic} term: the theory predicts switchings of the easy axis between in-plane ⟨100⟩\langle 100\rangle and ⟨110⟩\langle 110\rangle directions as a function of the hole concentration, whereas only the ⟨100⟩\langle 100\rangle orientation has been found experimentally. Here, we report on the observation of such switchings by magnetization and ferromagnetic resonance studies on a series of high-crystalline quality (Ga,Mn)As films. We describe our findings by the mean-field pp-dd Zener model augmented with three new ingredients. The first one is a scattering broadening of the hole density of states, which reduces significantly the amplitude of the alternating carrier-induced contribution. This opens the way for the two other ingredients, namely the so-far disregarded single-ion magnetic anisotropy and disorder-driven non-uniformities of the carrier density, both favoring the ⟨100⟩\langle 100\rangle direction of the apparent easy axis. However, according to our results, when the disorder gets reduced a switching to the ⟨110⟩\langle 110\rangle orientation is possible in a certain temperature and hole concentration range.Comment: 12 pages, 9 figure

    The Problem of Creative Collaboration

    Full text link
    In this Article, we explore a central problem facing creative industries: how to organize collaborative creative production. We argue that informal rules are a significant and pervasive—but nonetheless underappreciated—tool for solving the problem. While existing literature has focused on how informal rules sustain incentives for producing creative work, we demonstrate how such rules can facilitate and organize collaboration in the creative space. We also suggest that informal rules can be a better fit for creative organization than formal law. On the one side, unique features of creativity, especially high uncertainty and low verifiability, lead to organizational challenges that formal law cannot easily address, as demonstrated by recent high profile cases like Garcia v. Google, Inc. On the other side, certain informal rules can meet these challenges and facilitate organization. These informal rules, functioning through mechanisms like reputation and trust, can sustain organizational solutions without a manager, a hierarchical firm, or formal allocation of control rights. In addition to showing how informal rules can work without (much) formal law, we also sketch out the dynamics involved in more complex cases where informal rules function alongside formal law in organizing collaborative creativity

    Interval identification of FMR parameters for spin reorientation transition in (Ga,Mn)As

    Full text link
    In this work we report results of ferromagnetic resonance studies of a 6% 15 nm (Ga,Mn)As layer, deposited on (001)-oriented GaAs. The measurements were performed with in-plane oriented magnetic field, in the temperature range between 5K and 120K. We observe a temperature induced reorientation of the effective in-plane easy axis from [-110] to [110] direction close to the Curie temperature. The behavior of magnetization is described by anisotropy fields, H_{eff} (= 4\piM -H_{2\perp}), H_{2\parallel}, and H_{4\parallel}. In order to precisely investigate this reorientation, numerical values of anisotropy fields have been determined using powerful - but still largely unknown - interval calculations. In simulation mode this approach makes possible to find all the resonance fields for arbitrarily oriented sample, which is generally intractable analytically. In 'fitting' mode we effectively utilize full experimental information, not only those measurements performed in special, distinguished directions, to reliably estimate the values of important physical parameters as well as their uncertainties and correlations.Comment: 3 pages, 3 figures. Presented at The European Conference "Physics of Magnetism 2011" (PM'11), June 27 - July 1, 2011, Poznan, Polan

    Thickness dependence of magnetic properties of (Ga,Mn)As

    Full text link
    We report on a monotonic reduction of Curie temperature in dilute ferromagnetic semiconductor (Ga,Mn)As upon a well controlled chemical-etching/oxidizing thinning from 15 nm down to complete removal of the ferro- magnetic response. The effect already starts at the very beginning of the thinning process and is accompanied by the spin reorientation transition of the in-plane uniaxial anisotropy. We postulate that a negative gradient along the growth direction of self-compensating defects (Mn interstitial) and the presence of surface donor traps gives quantitative account on these effects within the p-d mean field Zener model with adequate mod- ifications to take a nonuniform distribution of holes and Mn cations into account. The described here effects are of practical importance for employing thin and ultrathin layers of (Ga,Mn)As or relative compounds in concept spintronics devices, like resonant tunneling devices in particular.Comment: 4 pages, 4 figures and supplementary information 2 pages, 1 figur
    • …
    corecore