18 research outputs found
Recommended from our members
Biocompatible microcapsules
Biocompatible microcapsules useful for transplanting foreign material into an animal body, and the method of their production, are described, wherein the microcapsules contain an outermost layer of water soluble non-ionic polymers such as PEO to create resistance to cell adhesion on the surface of the microcapsules.Board of Regents, University of Texas Syste
Recommended from our members
Biocompatible microcapsules
Biocompatible microcapsules useful for transplanting foreign material into an animal body, and the method of their production, are described, wherein the microcapsules contain an outermost layer of water soluble non-ionic polymers such as PEO to create resistance to cell adhesion on the surface of the microcapsules.Board of Regents, University of Texas Syste
Recommended from our members
Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
Hydrogels of polymerized and crosslinked macromers comprising hydrophilic oligomers having biodegradable monomeric or oligomeric extensions, which biodegradable extensions are terminated on free ends with end cap monomers or oligomers capable of polymerization and cross linking are described. The hydrophilic core itself may be degradable, thus combining the core and extension functions. Macromers are polymerized using free radical initiators under the influence of long wavelength ultraviolet light, visible light excitation or thermal energy. Biodegradation occurs at the linkages within the extension oligomers and results in fragments which are non-toxic and easily removed from the body. Preferred applications for the hydrogels include prevention of adhesion formation after surgical procedures, controlled release of drugs and other bioactive species, temporary protection or separation of tissue surfaces, adhering of sealing tissues together, and preventing the attachment of cells to tissue surfaces.Board of Regents, University of Texas Syste
Recommended from our members
Treating medical conditions by polymerizing macromers to form polymeric materials
Water soluble macromers are modified by addition of free radical polymerizable groups, such as those containing a carbon-carbon double or triple bond, which can be polymerized under mild conditions to encapsulate tissues, cells, or biologically active materials. The polymeric materials are particularly useful as tissue adhesives, coatings for tissue lumens including blood vessels, coatings for cells such as islets of Langerhans, and coatings, plugs, supports or substrates for contact with biological materials such as the body, and as drug delivery devices for biologically active molecules. A medical condition at a localized site is treated by applying a polymerization initiator and then applying a substantially water-soluble, degradable macromer of at least 200 mw and having at least two crosslinkable substituents, and polymerizing the macromer to form a crosslinked polymeric material at the site. The crosslinked polymeric material may adhere two surfaces together, or be a barrier that provides immunoisolation or prevents adhesion of the site to another surface such as post-surgical adhesion. A biologically active material may be present when the macromer is polymerized to provide for delivery of the biologically active material, or to provide the polymeric material with a desired property such as resistance to bacterial growth or a decrease in inflammatory response.Board of Regents, University of Texas Syste
Recommended from our members
Methods for modifying cell contact with a surface
Described herein is a multi-functional polymeric material for use in inhibiting adhesion and immune recognition between cells and cells, cells and tissues, and tissues and tissues. One component of the polymeric material adsorbs well to cells or tissue, and the other component of the polymeric material does not adsorb well to tissues. A water-soluble polymer that does not bear charge (polynonion) is used as the non-binding component, and a water soluble polymer that is positively charged at physiological pH (polycation) is used as the tissue binding component. When the bi-functional polymeric material contacts a tissue, the tissue-binding component binds and thus immobilizes the attached non-binding component, which will then extend generally away from the tissue surface and sterically block the attachment of other tissues. The method and compositions are useful in inhibiting formation of post-surgical adhesions, protecting damaged blood vessels from thrombosis and restenosis, and decreasing the extent of metastasis of attachment-dependent tumor cells.Board of Regents, University of Texas Syste
Recommended from our members
Compositions for coating microcapsules and other surfaces
Biocompatible microcapsules useful for transplanting foreign material into an animal body, and the method of their production, are described, wherein the microcapsules contain an outermost layer of water soluble non-ionic polymers such as PEO to create resistance to cell adhesion on the surface of the microcapsules.Board of Regents, University of Texas Syste
Recommended from our members
Gels for encapsulation of biological materials
This invention provides novel methods for the formation of biocompatible membranes around biological materials using photopolymerization of water soluble molecules. The membranes can be used as a covering to encapsulate biological materials or biomedical devices, as a “glue” to cause more than one biological substance to adhere together, or as carriers for biologically active species. Several methods for forming these membranes are provided. Each of these methods utilizes a polymerization system containing water-soluble macromers, species, which are at once polymers and macromolecules capable of further polymerization. The macromers are polymerized using a photoinitiator (such as a dye), optionally a cocatalyst, optionally an accelerator, and radiation in the form of visible or long wavelength UV light. The reaction occurs either by suspension polymerization or by interfacial polymerization. The polymer membrane can be formed directly on the surface of the biological material, or it can be formed on material, which is already encapsulated.Board of Regents, University of Texas Syste
Recommended from our members
Gels for encapsulation of biological materials
" This invention provides novel methods for the formation of biocompatible membranes around biological materials using photopolymerization of water soluble molecules. The membranes can be used as a covering to encapsulate biological materials or biomedical devices, as a ""glue"" to cause more than one biological substance to adhere together, or as carriers for biologically active species. Several methods for forming these membranes are provided. Each of these methods utilizes a polymerization system containing water-soluble macromers, species which are at once polymers and macromolecules capable of further polymerization. The macromers are polymerized using a photoinitiator (such as a dye), optionally a cocatalyst, optionally an accelerator, and radiation in the form of visible or long wavelength UV light. The reaction occurs either by suspension polymerization or by interfacial polymerization. The polymer membrane can be formed directly on the surface of the biological material, or it can be formed on material which is already encapsulated. "Board of Regents, University of Texas Syste
Recommended from our members
Gels for encapsulation of biological materials
" This invention provides novel methods for the formation of biocompatible membranes around biological materials using photopolymerization of water soluble molecules. The membranes can be used as a covering to encapsulate biological materials or biomedical devices, as a ""glue"" to cause more than one biological substance to adhere together, or as carriers for biologically active species. Several methods for forming these membranes are provided. Each of these methods utilizes a polymerization system containing water-soluble macromers, species which are at once polymers and macromolecules capable of further polymerization. The macromers are polymerized using a photoinitiator (such as a dye), optionally a cocatalyst, optionally an accelerator, and radiation in the form of visible or long wavelength UV light. The reaction occurs either by suspension polymerization or by interfacial polymerization. The polymer membrane can be formed directly on the surface of the biological material, or it can be formed on material which is already encapsulated. "Board of Regents, University of Texas Syste
Recommended from our members
Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release carriers
Hydrogels of polymerized and crosslinked macromers comprising hydrophilic oligomers having biodegradable monomeric or oligomeric extensions, which biodegradable extensions are terminated on free ends with end cap monomers or oligomers capable of polymerization and cross linking are described. The hydrophilic core itself may be degradable, thus combining the core and extension functions. Macromers are polymerized using free radical initiators under the influence of long wavelength ultraviolet light, visible light excitation or thermal energy. Biodegradation occurs at the linkages within the extension oligomers and results in fragments which are non-toxic and easily removed from the body. Preferred applications for the hydrogels include prevention of adhesion formation after surgical procedures, controlled release of drugs and other bioactive species, temporary protection or separation of tissue surfaces, adhering of sealing tissues together, and preventing the attachment of cells to tissue surfaces.Board of Regents, University of Texas Syste