20 research outputs found
A site assessment tool for inpatient controlled human infection models for enteric disease pathogens
The use of the controlled human infection model to facilitate product development and to advance understanding of host-pathogen interactions is of increasing interest. While administering a virulent (or infective) organism to a susceptible host necessitates an ongoing evaluation of safety and ethical considerations, a central theme in conducting these studies in a safe and ethical manner that yields actionable data is their conduct in facilities well-suited to address their unique attributes. To that end, we have developed a framework for evaluating potential sites in which to conduct inpatient enteric controlled human infection model to ensure consistency and increase the likelihood of success.publishedVersio
HIV-1 protease inhibitors and clinical malaria: A secondary analysis of the AIDS Clinical Trials Group A5208 study
HIV-1 protease inhibitors (PIs) have antimalarial activity in vitro and in murine models. The potential beneficial effect of HIV-1 PIs on malaria has not been studied in clinical settings. We used data from Adult AIDS Clinical Trials Group A5208 sites where malaria is endemic to compare the incidence of clinically diagnosed malaria among HIV-infected adult women randomized to either lopinavir/ritonavir (LPV/r)-based antiretroviral therapy (ART) or to nevirapine (NVP)-based ART. We calculated hazard ratios and 95% confidence intervals. We conducted a recurrent events analysis that included both first and second clinical malarial episodes and also conducted analyses to assess the sensitivity of results to outcome misclassification. Among the 445 women in this analysis, 137 (31%) received a clinical diagnosis of malaria at least once during follow-up. Of these 137, 72 (53%) were randomized to LPV/r-based ART. Assignment to the LPV/r treatment group (n = 226) was not consistent with a large decrease in the hazard of first clinical malarial episode (hazard ratio = 1.11 [0.79 to 1.56]). The results were similar in the recurrent events analysis. Sensitivity analyses indicated the results were robust to reasonable levels of outcome misclassification. In this study, the treatment with LPV/r compared to NVP had no apparent beneficial effect on the incidence of clinical malaria among HIV-infected adult women. Additional research concerning the effects of PI-based therapy on the incidence of malaria diagnosed by more specific criteria and among groups at a higher risk for severe disease is warranted. Copyrigh
Reference Ranges for the Clinical Laboratory Derived from a Rural Population in Kericho, Kenya
The conduct of Phase I/II HIV vaccine trials internationally necessitates the development of region-specific clinical reference ranges for trial enrolment and participant monitoring. A population based cohort of adults in Kericho, Kenya, a potential vaccine trial site, allowed development of clinical laboratory reference ranges. Lymphocyte immunophenotyping was performed on 1293 HIV seronegative study participants. Hematology and clinical chemistry were performed on up to 1541 cohort enrollees. The ratio of males to females was 1.9∶1. Means, medians and 95% reference ranges were calculated and compared with those from other nations. The median CD4+ T cell count for the group was 810 cells/µl. There were significant gender differences for both red and white blood cell parameters. Kenyan subjects had lower median hemoglobin concentrations (9.5 g/dL; range 6.7–11.1) and neutrophil counts (1850 cells/µl; range 914–4715) compared to North Americans. Kenyan clinical chemistry reference ranges were comparable to those from the USA, with the exception of the upper limits for bilirubin and blood urea nitrogen, which were 2.3-fold higher and 1.5-fold lower, respectively. This study is the first to assess clinical reference ranges for a highland community in Kenya and highlights the need to define clinical laboratory ranges from the national community not only for clinical research but also care and treatment
Hematology reference ranges (median and 95th-percentile) derived from HIV-seronegative adults in Kericho, Kenya.
a<p>: P value of <0.05 using the Wilcoxon rank test.</p
A site assessment tool for inpatient controlled human infection models for enteric disease pathogens
The use of the controlled human infection model to facilitate product development and to advance understanding of host-pathogen interactions is of increasing interest. While administering a virulent (or infective) organism to a susceptible host necessitates an ongoing evaluation of safety and ethical considerations, a central theme in conducting these studies in a safe and ethical manner that yields actionable data is their conduct in facilities well-suited to address their unique attributes. To that end, we have developed a framework for evaluating potential sites in which to conduct inpatient enteric controlled human infection model to ensure consistency and increase the likelihood of success
Clinical Chemistry reference ranges (median and 95th-percentile) derived from HIV-seronegative adults in Kericho, Kenya.
a<p>: P value of <0.05 using the Wilcoxon rank test.</p
Hematology reference ranges from Kericho, Kenya compared to other sources in Africa and the United States of America.
a<p>: NA-Not Available.</p
Comparison of Lymphocyte Reference Ranges from Kericho, Kenya with those from other countries.
a<p>: Reference ranges provided by Becton-Dickinson with the MultiTEST IMK Kit Reagent package (12/2000;23-3602-02).</p>b<p>:NA-Not Available.</p
Combining Viral Genetics and Statistical Modeling to Improve HIV-1 Time-of-Infection Estimation towards Enhanced Vaccine Efficacy Assessment
Knowledge of the time of HIV-1 infection and the multiplicity of viruses that establish HIV-1 infection is crucial for the in-depth analysis of clinical prevention efficacy trial outcomes. Better estimation methods would improve the ability to characterize immunological and genetic sequence correlates of efficacy within preventive efficacy trials of HIV-1 vaccines and monoclonal antibodies. We developed new methods for infection timing and multiplicity estimation using maximum likelihood estimators that shift and scale (calibrate) estimates by fitting true infection times and founder virus multiplicities to a linear regression model with independent variables defined by data on HIV-1 sequences, viral load, diagnostics, and sequence alignment statistics. Using Poisson models of measured mutation counts and phylogenetic trees, we analyzed longitudinal HIV-1 sequence data together with diagnostic and viral load data from the RV217 and CAPRISA 002 acute HIV-1 infection cohort studies. We used leave-one-out cross validation to evaluate the prediction error of these calibrated estimators versus that of existing estimators and found that both infection time and founder multiplicity can be estimated with improved accuracy and precision by calibration. Calibration considerably improved all estimators of time since HIV-1 infection, in terms of reducing bias to near zero and reducing root mean squared error (RMSE) to 5–10 days for sequences collected 1–2 months after infection. The calibration of multiplicity assessments yielded strong improvements with accurate predictions (ROC-AUC above 0.85) in all cases. These results have not yet been validated on external data, and the best-fitting models are likely to be less robust than simpler models to variation in sequencing conditions. For all evaluated models, these results demonstrate the value of calibration for improved estimation of founder multiplicity and of time since HIV-1 infection
Vaccine coverage of potential T-cell epitopes from the observed infections.
<p>Inserts from the candidate vaccines were analyzed for the proportion of nonamers that each of their respective immunogens covered within the infecting strains from the incident, higher-risk, and prevalent infection studies. For each immunogen, the epitope coverage comparisons were divided into the same pure and recombinant strain subsets used to generate Tables <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0135124#pone.0135124.t001" target="_blank">1</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0135124#pone.0135124.t002" target="_blank">2</a>. The colored sections of each bar denote the proportion of coverage attributable to a perfect match (black) or mismatched (blue to gray) nonamer as indicted by the figure legend.</p