5 research outputs found

    Comparison of homoeolocus organisation in paired BAC clones from white clover (Trifolium repens L.) and microcolinearity with model legume species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>White clover (<it>Trifolium repens </it>L.) is an outbreeding allotetraploid species and an important forage legume in temperate grassland agriculture. Comparison of sub-genome architecture and study of nucleotide sequence diversity within allopolyploids provides insight into evolutionary divergence mechanisms, and is also necessary for the development of whole-genome sequencing strategies. This study aimed to evaluate the degree of divergence between the O and P' sub-genomes of white clover through sequencing of BAC clones containing paired homoeoloci. The microsyntenic relationships between the genomes of white clover and the model legumes <it>Lotus japonicus </it>and <it>Medicago truncatula </it>as well as <it>Arabidopsis thaliana </it>were also characterised.</p> <p>Results</p> <p>A total of four paired homoeologous BACs were selected and sequenced to generate 173 kb of overlapping sequence between the O and P' sub-genomes. Equivalent gene content was generally observed, apart from small-scale deletions, in contrast to conservation of intergenic sequences, which varied between the four selected regions. Measurement of the number of synonymous substitutions between homoeologous genes led to estimation of a 4.2 million year divergence time between the two sub-genomes. Microsynteny was observed between the genomes of white clover and <it>L. japonicus </it>for all four targeted regions, but corresponding <it>M. truncatula </it>genomic regions were only identified for two BAC pairs.</p> <p>Conclusions</p> <p>This study describes the first analysis of sub-genome structural conservation across selected genomic regions in white clover. Although the high levels of sequence conservation between the O and P' sub-genomes would complicate efforts for whole genome sequence assembly, the conserved microsynteny with model legume genomes, especially that of <it>L. japonicus</it>, will be highly valuable for the future of white clover genomics and molecular breeding.</p

    Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass (Lolium perenne L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Qualitative pathogen resistance in both dicotyledenous and monocotyledonous plants has been attributed to the action of resistance (R) genes, including those encoding nucleotide binding site – leucine rich repeat (NBS-LRR) proteins and receptor-like kinase enzymes. This study describes the large-scale isolation and characterisation of candidate R genes from perennial ryegrass. The analysis was based on the availability of an expressed sequence tag (EST) resource and a functionally-integrated bioinformatics database.</p> <p>Results</p> <p>Amplification of R gene sequences was performed using template EST data and information from orthologous candidate using a degenerate consensus PCR approach. A total of 102 unique partial R genes were cloned, sequenced and functionally annotated. Analysis of motif structure and R gene phylogeny demonstrated that <it>Lolium </it>R genes cluster with putative ortholoci, and evolved from common ancestral origins. Single nucleotide polymorphisms (SNPs) predicted through resequencing of amplicons from the parental genotypes of a genetic mapping family were validated, and 26 distinct R gene loci were assigned to multiple genetic maps. Clusters of largely non-related NBS-LRR genes were located at multiple distinct genomic locations and were commonly found in close proximity to previously mapped defence response (DR) genes. A comparative genomics analysis revealed the co-location of several candidate R genes with disease resistance quantitative trait loci (QTLs).</p> <p>Conclusion</p> <p>This study is the most comprehensive analysis to date of qualitative disease resistance candidate genes in perennial ryegrass. SNPs identified within candidate genes provide a valuable resource for mapping in various ryegrass pair cross-derived populations and further germplasm analysis using association genetics. In parallel with the use of specific pathogen virulence races, such resources provide the means to identify gene-for-gene mechanisms for multiple host pathogen-interactions and ultimately to obtain durable field-based resistance.</p
    corecore