71 research outputs found
Mutant Huntingtin induces activation of the Bcl-2/adenovirus E1B 19-kDa interacting protein (BNip3)
Huntington's disease (HD) is a neurodegenerative disorder characterized by progressive neuronal death in the basal ganglia and cortex. Although increasing evidence supports a pivotal role of mitochondrial dysfunction in the death of patients' neurons, the molecular bases for mitochondrial impairment have not been elucidated. We provide the first evidence of an abnormal activation of the Bcl-2/adenovirus E1B 19-kDa interacting protein 3 (BNip3) in cells expressing mutant Huntingtin. In this study, we show an abnormal accumulation and dimerization of BNip3 in the mitochondria extracted from human HD muscle cells, HD model cell cultures and brain tissues from HD model mice. Importantly, we have shown that blocking BNip3 expression and dimerization restores normal mitochondrial potential in human HD muscle cells. Our data shed light on the molecular mechanisms underlying mitochondrial dysfunction in HD and point to BNip3 as a new potential target for neuroprotective therapy in HD
Toll-Like Receptor 2 Induced Angiogenesis and Invasion Is Mediated through the Tie2 Signalling Pathway in Rheumatoid Arthritis
BACKGROUND: Angiogenesis is a critical early event in inflammatory arthritis, facilitating leukocyte migration into the synovium resulting in invasion and destruction of articular cartilage and bone. This study investigates the effect of TLR2 on angiogenesis, EC adhesion and invasion using microvascular endothelial cells and RA whole tissue synovial explants ex-vivo. METHODS: Microvascular endothelial cells (HMVEC) and RA synovial explants ex vivo were cultured with the TLR2 ligand, Pam3CSK4 (1 µg/ml). Angiopoietin 2 (Ang2), Tie2 and TLR2 expression in RA synovial tissue was assessed by immunohistology. HMVEC tube formation was assessed using Matrigel matrix assays. Ang2 was measured by ELISA. ICAM-1 cell surface expression was assessed by flow cytometry. Cell migration was assessed by wound repair scratch assays. ECM invasion, MMP-2 and -9 expression were assessed using transwell invasion chambers and zymography. To examine if the angiopoietin/Tie2 signalling pathway mediates TLR2 induced EC tube formation, invasion and migration assays were performed in the presence of a specific neutralising anti-Tie2mAb (10 ug/ml) and matched IgG isotype control Ab (10 ug/ml). RESULTS: Ang2 and Tie2 were localised to RA synovial blood vessels, and TLR2 was localised to RA synovial blood vessels, sub-lining infiltrates and the lining layer. Pam3CSK4 significantly increased angiogenic tube formation (p<0.05), and upregulated Ang2 production in HMVEC (p<0.05) and RA synovial explants (p<0.05). Pam3CSK4 induced cell surface expression of ICAM-1, from basal level of 149±54 (MFI) to 617±103 (p<0.01). TLR-2 activation induced an 8.8±2.8 fold increase in cell invasion compared to control (p<0.05). Pam3CSK4 also induced HMVEC cell migration and induced MMP-2 and -9 from RA synovial explants. Neutralisation of the Ang2 receptor, Tie2 significantly inhibited Pam3CSK4-induced EC tube formation and invasion (p<0.05). CONCLUSION: TLR2 activation promotes angiogenesis, cell adhesion and invasion, effects that are in part mediated through the Tie2 signalling pathway, key mechanisms involved in the pathogenesis of RA
A Genome-Wide RNAi Screen for Factors Involved in Neuronal Specification in Caenorhabditis elegans
One of the central goals of developmental neurobiology is to describe and understand the multi-tiered molecular events that control the progression of a fertilized egg to a terminally differentiated neuron. In the nematode Caenorhabditis elegans, the progression from egg to terminally differentiated neuron has been visually traced by lineage analysis. For example, the two gustatory neurons ASEL and ASER, a bilaterally symmetric neuron pair that is functionally lateralized, are generated from a fertilized egg through an invariant sequence of 11 cellular cleavages that occur stereotypically along specific cleavage planes. Molecular events that occur along this developmental pathway are only superficially understood. We take here an unbiased, genome-wide approach to identify genes that may act at any stage to ensure the correct differentiation of ASEL. Screening a genome-wide RNAi library that knocks-down 18,179 genes (94% of the genome), we identified 245 genes that affect the development of the ASEL neuron, such that the neuron is either not generated, its fate is converted to that of another cell, or cells from other lineage branches now adopt ASEL fate. We analyze in detail two factors that we identify from this screen: (1) the proneural gene hlh-14, which we find to be bilaterally expressed in the ASEL/R lineages despite their asymmetric lineage origins and which we find is required to generate neurons from several lineage branches including the ASE neurons, and (2) the COMPASS histone methyltransferase complex, which we find to be a critical embryonic inducer of ASEL/R asymmetry, acting upstream of the previously identified miRNA lsy-6. Our study represents the first comprehensive, genome-wide analysis of a single neuronal cell fate decision. The results of this analysis provide a starting point for future studies that will eventually lead to a more complete understanding of how individual neuronal cell types are generated from a single-cell embryo
Unphosphorylated SR-Like Protein Npl3 Stimulates RNA Polymerase II Elongation
The production of a functional mRNA is regulated at every step of transcription. An area not well-understood is the transition of RNA polymerase II from elongation to termination. The S. cerevisiae SR-like protein Npl3 functions to negatively regulate transcription termination by antagonizing the binding of polyA/termination proteins to the mRNA. In this study, Npl3 is shown to interact with the CTD and have a direct stimulatory effect on the elongation activity of the polymerase. The interaction is inhibited by phosphorylation of Npl3. In addition, Casein Kinase 2 was found to be required for the phosphorylation of Npl3 and affect its ability to compete against Rna15 (Cleavage Factor I) for binding to polyA signals. Our results suggest that phosphorylation of Npl3 promotes its dissociation from the mRNA/RNAP II, and contributes to the association of the polyA/termination factor Rna15. This work defines a novel role for Npl3 in elongation and its regulation by phosphorylation
JunD/AP-1-Mediated Gene Expression Promotes Lymphocyte Growth Dependent on Interleukin-7 Signal Transduction
Interleukin-7 (IL-7) is an essential cytokine for lymphocyte growth that has the potential for promoting immune reconstitution. This feature makes IL-7 an ideal candidate for therapeutic development. As with other cytokines, signaling through the IL-7 receptor induces the JAK/STAT pathway. However, the broad scope of IL-7 regulatory targets likely necessitates the use of other signaling components whose identities remain poorly defined. To this end, we used an IL-7 dependent T-cell line to examine how expression of the glycolytic enzyme, Hexokinase II (HXKII) was regulated by IL-7 in a STAT5-independent manner. Our studies revealed that IL-7 promoted the activity of JNK (Jun N-terminal Kinase), and that JNK, in turn, drove the expression of JunD, a component of the Activating Protein 1 (AP-1) transcription factors. Gel shifts showed that the AP-1 complex induced by IL-7 contained JunD but not c-Fos or c-Jun. Inhibition of JNK/JunD blocked glucose uptake and HXKII gene expression, indicating that this pathway was responsible for promoting HXKII expression. Because others had shown that JunD was a negative regulator of cell growth, we performed a bioinformatics analysis to uncover possible JunD-regulated gene targets. Our search revealed that JunD could control the expression of proteins involved in signal transduction, cell survival and metabolism. One of these growth promoters was the oncogene, Pim-1. Pim-1 is an IL-7-induced protein that was inhibited when the activities of JNK or JunD were blocked, showing that in IL-7 dependent T-cells JunD can promote positive signals transduced through Pim-1. This was confirmed when the IL-7-induced proliferation of CD8 T-cells was impaired upon JunD inhibition. These results show that engagement of the IL-7 receptor drives a signal that is more complex than the JAK/STAT pathway, activating JNK and JunD to induce rapid growth stimulation through the expression of metabolic and signaling factors like HXKII and Pim-1
Alzheimer's Disease: a Review of its Visual System Neuropathology. Optical Coherence Tomography-a Potential Role As a Study Tool in Vivo
Alzheimer's disease (AD) is a prevalent, long-term progressive degenerative disorder with great social impact. It is currently thought that, in addition to neurodegeneration, vascular changes also play a role in the pathophysiology of the disease. Visual symptoms are frequent and are an early clinical manifestation; a number of psychophysiologic changes occur in visual function, including visual field defects, abnormal contrast sensitivity, abnormalities in color vision, depth perception deficits, and motion detection abnormalities. These visual changes were initially believed to be solely due to neurodegeneration in the posterior visual pathway. However, evidence from pathology studies in both animal models of AD and humans has demonstrated that neurodegeneration also takes place in the anterior visual pathway, with involvement of the retinal ganglion cells' (RGCs) dendrites, somata, and axons in the optic nerve. These studies additionally showed that patients with AD have changes in retinal and choroidal microvasculature. Pathology findings have been corroborated in in-vivo assessment of the retina and optic nerve head (ONH), as well as the retinal and choroidal vasculature. Optical coherence tomography (OCT) in particular has shown great utility in the assessment of these changes, and it may become a useful tool for early detection and monitoring disease progression in AD. The authors make a review of the current understanding of retinal and choroidal pathological changes in patients with AD, with particular focus on in-vivo evidence of retinal and choroidal neurodegenerative and microvascular changes using OCT technology.info:eu-repo/semantics/publishedVersio
β-Catenin asymmetry is regulated by PLA1 and retrograde traffic in C. elegans stem cell divisions
Asymmetric division is an important property of stem cells. In Caenorhabditis elegans, the Wnt/β-catenin asymmetry pathway determines the polarity of most asymmetric divisions. The Wnt signalling components such as β-catenin localize asymmetrically to the cortex of mother cells to produce two distinct daughter cells. However, the molecular mechanism to polarize them remains to be elucidated. Here, we demonstrate that intracellular phospholipase A1 (PLA1), a poorly characterized lipid-metabolizing enzyme, controls the subcellular localizations of β-catenin in the terminal asymmetric divisions of epithelial stem cells (seam cells). In mutants of ipla-1, a single C. elegans PLA1 gene, cortical β-catenin is delocalized and the asymmetry of cell-fate specification is disrupted in the asymmetric divisions. ipla-1 mutant phenotypes are rescued by expression of ipla-1 in seam cells in a catalytic activity-dependent manner. Furthermore, our genetic screen utilizing ipla-1 mutants reveals that reduction of endosome-to-Golgi retrograde transport in seam cells restores normal subcellular localization of β-catenin to ipla-1 mutants. We propose that membrane trafficking regulated by ipla-1 provides a mechanism to control the cortical asymmetry of β-catenin
Following the genes: a framework for animal modeling of psychiatric disorders
The number of individual cases of psychiatric disorders that can be ascribed to identified, rare, single mutations is increasing with great rapidity. Such mutations can be recapitulated in mice to generate animal models with direct etiological validity. Defining the underlying pathogenic mechanisms will require an experimental and theoretical framework to make the links from mutation to altered behavior in an animal or psychopathology in a human. Here, we discuss key elements of such a framework, including cell type-based phenotyping, developmental trajectories, linking circuit properties at micro and macro scales and definition of neurobiological phenotypes that are directly translatable to humans
- …