2,282 research outputs found

    Turbulence attenuation by large neutrally buoyant particles

    Get PDF
    Turbulence modulation by inertial-range-size, neutrally-buoyant particles is investigated experimentally in a von K\'arm\'an flow. Increasing the particle volume fraction Φv\Phi_\mathrm{v}, maintaining constant impellers Reynolds number attenuates the fluid turbulence. The inertial-range energy transfer rate decreases as Φv2/3\propto\Phi_\mathrm{v}^{2/3}, suggesting that only particles located on a surface affect the flow. Small-scale turbulent properties, such as structure functions or acceleration distribution, are unchanged. Finally, measurements hint at the existence of a transition between two different regimes occurring when the average distance between large particles is of the order of the thickness of their boundary layers.Comment: 7 pages, 4 figure

    Evaluation of the ADVIA (R) Centaur (TM) TSH-3 assay

    Get PDF
    An analytical evaluation of the thyroid stimulating hormone (TSH-3) assay on the Sayer ADVIA(R) Centaur(TM) immunoassay system was performed. General analytical requirements (linearity, resistance to typical interferences, absence of a carry-over effect) were fulfilled and reproducibility was satisfactory. Inter-assay coefficient of variation (CV) of a human serum pool with a concentration of 0.014 mU/l was 22.3%; at concentrations between 0.26 and 83 mU/l CV was below 6%. Method comparison study demonstrated close agreement of TSH results compared to those obtained with the Roche Elecsys(R) 2010 TSH assay (ADVIA Centaur = 1.08 x Elecsys - 0.18 mU/l; r = 0.987; n = 324). Handling and practicability of the ADVIA Centaur system proved to be convenient with a very high sample throughput. We conclude that the ADVIA Centaur TSH-3 assay meets requirements for clinical use

    Computer Simulation Study of the Phase Behavior and Structural Relaxation in a Gel-Former Modeled by Three Body Interactions

    Full text link
    We report a computer simulation study of a model gel-former obtained by modifying the three-body interactions of the Stillinger-Weber potential for silicon. This modification reduces the average coordination number and consequently shifts the liquid-gas phase coexistence curve to low densities, thus facilitating the formation of gels without phase separation. At low temperatures and densities, the structure of the system is characterized by the presence of long linear chains interconnected by a small number of three coordinated junctions at random locations. At small wave-vectors the static structure factor shows a non-monotonic dependence on temperature, a behavior which is due to the competition between the percolation transition of the particles and the stiffening of the formed chains. We compare in detail the relaxation dynamics of the system as obtained from molecular dynamics with the one obtained from Monte Carlo dynamics. We find that the bond correlation function displays stretched exponential behavior at moderately low temperatures and densities, but exponential relaxation at low temperatures. The bond lifetime shows an Arrhenius behavior, independent of the microscopic dynamics. For the molecular dynamics at low temperatures, the mean squared displacement and the (coherent and incoherent) intermediate scattering function display at intermediate times a dynamics with ballistic character and we show that this leads to compressed exponential relaxation. For the Monte Carlo dynamics we find always an exponential or stretched exponential relaxation. Thus we conclude that the compressed exponential relaxation observed in experiments is due to the out-of-equilibrium dynamics

    Validation of a fornix depth measurer: a putative tool for the assessment of progressive cicatrising conjunctivitis

    Get PDF
    Background/aims Documentation of conjunctival forniceal foreshortening in cases of progressive cicatrising conjunctivitis (PCC) is important in ascertaining disease stage and progression. Lower fornix shortening is often documented subjectively or semi-objectively, whereas upper forniceal obliteration is seldom quantified. Although tools such as fornix depth measurers (FDMs) have been described, their designs limit upper fornix measurement. The purpose of this study was to custom-design a FDM to evaluate the upper fornix and to assess variability in gauging fornix depth. \ud \ud Methods A polymethylmethacrylate FDM was constructed using industry-standard jewellery computer software and machinery. Two observers undertook a prospective independent evaluation of central lower fornix depth in a heterogeneous cohort of patients with clinically normal and abnormal conjunctival fornices both subjectively and by using the FDM (in mm). Upper central fornix depth was also measured. Agreement was assessed using Bland–Altman plots. \ud \ud Results Fifty-one eyes were evaluated. There was 100% intraobserver agreement to within 1 mm for each observer for lower fornix measurement. The mean difference in fornix depth loss using the FDM between observer 1 and 2 was 1.19%, with 95% confidence of agreement (±2SD) of −15% to +20%. In total, 86% (44/51) of measurements taken by the two observers agreed to within 10% of total lower fornix depth (ie, ±1 mm) versus only 63% (32/51) of the subjective measurements. Mean upper fornix difference was 0.57 mm, with 95% confidence of agreement of between −2 and + 3 mm. \ud \ud Conclusions This custom-designed FDM is well tolerated by patients and shows low intraobserver and interobserver variability. This enables repeatable and reproducible measurement of upper and lower fornix depths, facilitating improved rates of detection and better monitoring of progression of conjunctival scarring

    Enzymes of Hevea brasiliensis latex. Adenylate Kinase, Sulphate Adenylyitransferase (ATP-sulphurylase) and Thiosulphate Sulphurtransferase (Rhodanese)

    Get PDF
    Penyiasatan fasa serum dari lateks Hevea brasiliensis mendalilkan kewujudan ketiga enzim yang beriku t: adenilat kinase EC 2.7.4.3; sulfat adenililtransferase (ATP-sulfurilase) EC 2.7.7.4; tiosulfat sulfurtransferase (rodanese) EC 2.8.1.1

    Travel Time Estimation Modelling under Heterogeneous Traffic: A Case Study of Urban Traffic Corridor in Surat, India

    Get PDF
    Achievement of fast and reliable travel time on urban road network is one of the major objectives for a transport planner against the enormous growth in vehicle population and urban traffic in most of the metropolitan cities in India. Urban arterials or main city corridors are subjected to heavy traffic flow resulting in degradation of traffic quality in terms of vehicular delays and increase in travel time. Since the Indian roadway traffic is characterized by heterogeneity with dominance of 2Ws (Two wheelers) and 3Ws (Auto rickshaw), travel times are varying significantly. With this in background, the present paper focuses on identification of travel time attributes such as heterogeneous traffic, road side friction and corridor intersections for recurrent traffic condition and to develop an appropriate Corridor Travel Time Estimation Model using Multi-Linear Regression (MLR) approach. The model is further subjected to sensitivity analysis with reference to identified attributes to realize the impact of the identified attributes on travel time so as to suggest certain measures for improvement

    Correlation of measured neon soft X-ray pulses of the INTI plasma focus with the reflected shock phase at 12KV

    Get PDF
    The six-phase Lee Model Code is used to fit the computed current waveform to the measured waveform of the INTI Plasma Focus (PF;2.2 kJ at 12 kV), a T2 PF device, operated as a source of Neon soft X-ray (SXR) with optimum yield around 2.5 - 3 Torr of neon. The characteristic He-like and H-like neon line SXR pulse is measured using a pair of SXR detectors with selected filters that, by subtraction, have a photon energy window of 900 to 1550 eV covering the region of the characteristic neon SXR lines. The aim of this paper is to investigate the correlation between the time histories of the measured Neon soft X-ray pulse and the reflected shock phase of the computed current waveform which has been fitted to the measured current waveform. Results shows that the characteristic neon SXR measured at 3.17 J with a pulse duration of 249 ns starts typically after the radial inward shock phase and increases in magnitude few ns before the pinch phase. It tails unto the first anomalous resistance, and decays at the second anomalous resistance
    corecore