2 research outputs found

    Growth Potential of Selected Yeast Strains Cultivated on Xylose-Based Media Mimicking Lignocellulosic Wastewater Streams: High Production of Microbial Lipids by Rhodosporidium toruloides

    No full text
    The potential of Rhodosporidium toruloides, Candida oleophila, Metschnikowia pulcherima, and Cryptococcus curvatus species to produce single-cell-oil (SCO) and other valuable metabolites on low-cost media, based on commercial-type xylose, was investigated. Rhodosporidium strains were further evaluated in shake-flasks using different lignosulphonate (LS) concentrations, in media mimicking waste streams derived from the paper and pulp industry. Increasing the LS concentration up to 40 g/L resulted in enhanced dry cell weight (DCW) while SCO production increased up to ~5.0 g/L when R. toruloides NRRL Y-27012 and DSM 4444 were employed. The intra-cellular polysaccharide production ranged from 0.9 to 2.3 g/L in all fermentations. Subsequent fed-batch bioreactor experiments with R. toruloides NRRL Y-27012 using 20 g/L of LS and xylose, led to SCO production of 17.0 g/L with maximum lipids in DCW (YL/X) = 57.0% w/w. The fatty acid (FA) profile in cellular lipids showed that oleic (50.3–63.4% w/w) and palmitic acid (23.9–31.0%) were the major FAs. Only SCO from batch trials of R. toruloides strains contained α-linolenic acid. Media that was supplemented with various LS concentrations enhanced the unsaturation profile of SCO from R. toruloides NRRL Y-27012. SCO from R. toruloides strains could replace plant-based commodity oils in oleochemical-operations and/or it could be micro- and nano-encapsulated into novel food-based formulas offering healthier food-products

    Bioconversions of Biodiesel-Derived Glycerol into Sugar Alcohols by Newly Isolated Wild-Type <i>Yarrowia lipolytica</i> Strains

    No full text
    The utilization of crude glycerol, generated as a by-product from the biodiesel production process, for the production of high value-added products represents an opportunity to overcome the negative impact of low glycerol prices in the biodiesel industry. In this study, the biochemical behavior of Yarrowia lipolytica strains FMCC Y-74 and FMCC Y-75 was investigated using glycerol as a carbon source. Initially, the effect of pH value (3.0–7.0) was examined to produce polyols, intracellular lipids, and polysaccharides. At low pH values (initial pH 3.0–5.0), significant mannitol production was recorded. The highest mannitol production (19.64 g L−1) was obtained by Y. lipolytica FMCC Y-74 at pH = 3.0. At pH values ranging between 5.0 and 6.0, intracellular polysaccharides synthesis was favored, while polyols production was suppressed. Subsequently, the effect of crude glycerol and its concentration on polyols production was studied. Y. lipolytica FMCC Y-74 showed high tolerance to impurities of crude glycerol. Initial substrate concentrations influence polyols production and distribution with a metabolic shift toward erythritol production being observed when the initial glycerol concentration (Gly0) increased. The highest total polyols production (=56.64 g L−1) was obtained at Gly0 adjusted to ≈120 g L−1. The highest polyols conversion yield (0.59 g g−1) and productivity (4.36 g L−1 d−1) were reached at Gly0 = 80 g L−1. In fed-batch intermittent fermentation with glycerol concentration remaining ≤60 g L−1, the metabolism was shifted toward mannitol biosynthesis, which was the main polyol produced in significant quantities (=36.84 g L−1) with a corresponding conversion yield of 0.51 g g−1
    corecore