466 research outputs found
Improved visualization of X-ray phase contrast volumetric data through artifact-free integrated differential images
Artifacts arising when differential phase images are integrated is a common problem to several X-ray phase-based experimental techniques. The combination of noise and insufficient sampling of the high-frequency differential phase signal leads to the formation of streak artifacts in the projections, translating into poor image quality in the tomography slices. In this work, we apply a non-iterative integration algorithm proven to reduce streak artifacts in planar (2D) images to a differential phase tomography scan. We report on how the reduction of streak artifacts in the projections improves the quality of the tomography slices, especially in the directions different from the reconstruction plane. Importantly, the method is compatible with large tomography datasets in terms of computation time
Bragg Polaritons: Strong Coupling and Amplification in an Unfolded Microcavity
Periodic incorporation of quantum wells inside a one--dimensional Bragg
structure is shown to enhance coherent coupling of excitons to the
electromagnetic Bloch waves. We demonstrate strong coupling of quantum well
excitons to photonic crystal Bragg modes at the edge of the photonic bandgap,
which gives rise to mixed Bragg polariton eigenstates. The resulting Bragg
polariton branches are in good agreement with the theory and allow
demonstration of Bragg polariton parametric amplification.Comment: 4 pages, 4 figure
Operation speed of polariton condensate switches gated by excitons
We present a time-resolved photoluminescence (PL) study in real- and
momentum-space of a polariton condensate switch in a quasi-1D semiconductor
microcavity. The polariton flow across the ridge is gated by excitons inducing
a barrier potential due to repulsive interactions. A study of the device
operation dependence on the power of the pulsed gate beam obtains a
satisfactory compromise for the ON/OFF-signal ratio and -switching time of the
order of 0.3 and ps, respectively. The opposite transition is
governed by the long-lived gate excitons, consequently the OFF/ON-switching
time is ps, limiting the overall operation speed of the device
to GHz. The experimental results are compared to numerical
simulations based on a generalized Gross-Pitaevskii equation, taking into
account incoherent pumping, decay and energy relaxation within the condensate.Comment: 11 pages, 11 figure
The presence of (NRPS) and (PKS) genes at the deepsea hydrothermal field in the Aegean Sea
Deep-sea hydrothermal vents are characterized by extremely high concentrations of microorganisms in stark contrast to the surrounding sea bottom. Nevertheless, deepsea consumers do not rapidly remove the high biomass of prey from these communities maybe due to vent microbes’ chemical defenses which still remain largely unknown. Meanwhile, the detection of genes responsible for antimicrobial and cytotoxic activity such as non-ribosomal peptide synthases (NRPS) and polyketide (PKS) of deep-sea vent bacteria has not so far been attempted
Energy relaxation of exciton-polariton condensates in quasi-1D microcavities
We present a time-resolved study of energy relaxation and trapping dynamics
of polariton condensates in a semiconductor microcavity ridge. The combination
of two non-resonant, pulsed laser sources in a GaAs ridge-shaped microcavity
gives rise to profuse quantum phenomena where the repulsive potentials created
by the lasers allow the modulation and control of the polariton flow. We
analyze in detail the dependence of the dynamics on the power of both lasers
and determine the optimum conditions for realizing an all-optical polariton
condensate transistor switch. The experimental results are interpreted in the
light of simulations based on a generalized Gross-Pitaevskii equation,
including incoherent pumping, decay and energy relaxation within the
condensate.Comment: 15 pages, 20 figure
Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities
A massive redistribution of the polariton occupancy to two specific wave vectors is observed under conditions of continuous wave excitation of a semiconductor microcavity.
The “condensation” of the polaritons to the two specific states arises from stimulated scattering at final
state occupancies of order unity. The stimulation phenomena, arising due to the bosonic character of
the polariton quasiparticles, occur for conditions of resonant excitation of the lower polariton branch.
High energy nonresonant excitation, as in most previous work, instead leads to conventional lasing in
the vertical cavity structure
- …