19 research outputs found

    Food Safety Risks Associated with Hepatitis E Virus Detection in Wild Boar Liver

    Get PDF
    Hepatitis E virus (HEV) has significantly impacted humans due to its potential to cause acute viral hepatitis. Discovery of hepatitis E virus in domestic pigs and wild boars worldwide and the realization that it is highly prevalent, raised concerns of the implications for food-borne transmission of HEV in Europe. Present work focusses on molecular detection of hepatitis E virus in wild boar liver samples, underlining the possible role of wildlife as a source of HEV transmission to humans. During hunting season 2016-2017, liver samples were collected from 37 wild boars in Iași and Suceava County. All tissues samples were submitted for RNA isolation followed by nested RT-PCR. Genetic characterization of wild boar HEV targeted the structural gene in the ORF2 region of hepatitis E virus genome. After specific amplification by nested RT-PCR of a 348 nt fragment from HEV ORF2, five liver samples positive for hepatitis E virus genotype 3 RNA were identified. In the present study HEV detection in Romanian fresh liver from wild boars highlights the importance of swine as a possible source of foodborne transmission. Moreover, our results along with the reviewed literature data emphasize the necessity of efficient food safety control measures implementation

    Borrelia Diversity and Co-infection with Other Tick Borne Pathogens in Ticks

    Get PDF
    Identifying Borrelia burgdorferi as the causative agent of Lyme disease in 1981 was a watershed moment in understanding the major impact that tick-borne zoonoses can have on public health worldwide, particularly in Europe and the USA. The medical importance of tick-borne diseases has long since been acknowledged, yet little is known regarding the occurrence of emerging tick-borne pathogens such as Borrelia spp., Anaplasma phagocytophilum, Rickettsia spp., Bartonella spp., "Candidatus Neoehrlichia mikurensis", and tick-borne encephalitis virus in questing ticks in Romania, a gateway into Europe. The objective of our study was to identify the infection and co-infection rates of different Borrelia genospecies along with other tick-borne pathogens in questing ticks collected from three geographically distinct areas in eastern Romania. We collected 557 questing adult and nymph ticks of three different species (534 Ixodes ricinus, 19 Haemaphysalis punctata, and 4 Dermacentor reticulatus) from three areas in Romania. We analyzed ticks individually for the presence of eight different Borrelia genospecies with high-throughput real-time PCR. Ticks with Borrelia were then tested for possible co-infections with A. phagocytophilum, Rickettsia spp., Bartonella spp., "Candidatus Neoehrlichia mikurensis", and tick-borne encephalitis virus. Borrelia spp. was detected in I. ricinus ticks from all sampling areas, with global prevalence rates of 25.8%. All eight Borrelia genospecies were detected in I. ricinus ticks: Borrelia garinii (14.8%), B. afzelii (8.8%), B. valaisiana (5.1%), B. lusitaniae (4.9%), B. miyamotoi (0.9%), B. burgdorferi s. s (0.4%), and B. bissettii (0.2%). Regarding pathogen co-infection 64.5% of infected I. ricinus were positive for more than one pathogen. Associations between different Borrelia genospecies were detected in 9.7% of ticks, and 6.9% of I. ricinus ticks tested positive for co-infection of Borrelia spp. with other tick-borne pathogens. The most common association was between B. garinii and B. afzelii (4.3%), followed by B. garinii and B. lusitaniae (3.0%). The most frequent dual co-infections were between Borrelia spp. and Rickettsia spp., (1.3%), and between Borrelia spp. and "Candidatus Neoehrlichia mikurensis" (1.3%). The diversity of tick-borne pathogens detected in this study and the frequency of co-infections should influence all infection risk evaluations following a tick bite

    Evidence of West Nile virus (WNV) circulation in wild birds and WNV RNA negativity in mosquitoes of the Danube Delta Biosphere Reserve, Romania, 2016

    Get PDF
    West Nile virus (WNV) is a zoonotic flavivirus whose transmission cycle in nature includes wild birds as amplifying hosts and ornithophilic mosquito vectors. Bridge vectors can transmit WNV to mammal species potentially causing West Nile Fever. Wild bird migration is a mode of WNV introduction into new areas. The Danube Delta Biosphere Reserve (DDBR) is a major stopover of wild birds migrating between Europe and Africa. The aim of this study was to investigate the presence of WNV in the DDBR during the 2016 transmission season in wild birds and mosquitoes. Blood from 68 wild birds (nine different species) trapped at four different locations was analyzed by competitive ELISA and Virus Neutralization Test (VNT), revealing positive results in 8/68 (11.8%) of the wild birds by ELISA of which six samples (three from juvenile birds) were confirmed seropositive by VNT. Mosquitoes (n = 6523, 5 genera) were trapped with CDC Mini Light traps at two locations and in one location resting mosquitoes were caught. The presence of WNV RNA was tested in 134 pools by reverse transcription quantitative PCR (RT-qPCR). None of the pools was positive for WNV-specific RNA. Based on the obtained results, WNV was circulating in the DDBR during 2016

    Species diversity, host preference and arbovirus detection of Culicoides (Diptera: Ceratopogonidae) in south-eastern Serbia

    Get PDF
    BackgroundCulicoides (Diptera: Ceratopogonidae) is a genus of small biting midges (also known as no-see ums) that currently includes 1368 described species. They are proven or suspected vectors for important pathogens affecting animals such as bluetongue virus (BTV) and Schmallenberg virus (SBV). Currently little information is available on the species of Culicoides present in Serbia. Thus, the aim of this study was to examine species diversity, host preference and the presence of BTV and SBV RNA in Culicoides from the Stara Planina Nature Park in south-eastern Serbia.ResultsIn total 19,887 individual Culicoides were collected during three nights of trapping at two farm sites and pooled into six groups (Obsoletus group, Pulicaris group, Others group and further each group according to the blood-feeding status to freshly engorged and non-engorged). Species identification was done on subsamples of 592 individual Culicoides specimens by morphological and molecular methods (MALDI-TOF mass spectrometry and PCR/sequencing). At least 22 Culicoides species were detected. Four animal species (cow, sheep, goat and common blackbird) as well as humans were identified as hosts of Culicoides biting midges. The screening of 8291 Culicoides specimens in 99 pools for the presence of BTV and SBV RNA by reverse-transcription quantitative PCR were negative.ConclusionsThe biodiversity of Culicoides species in the natural reserve Stara Planina was high with at least 22 species present. The presence of C. imicola Kieffer was not recorded in this area. Culicoides showed opportunistic feeding behaviour as determined by host preference. The absence of SBV and BTV viral RNA correlates with the absence of clinical disease in the field during the time of sampling. These data are the direct outcome of a training programme within the Institutional Partnership Project AMSAR: Arbovirus monitoring, research and surveillance-capacity building on mosquitoes and biting midges funded by the programme SCOPES of the Swiss National Science Foundation

    First Detection of Hepatitis E Virus (<i>Rocahepevirus ratti</i> Genotype C1) in Synanthropic Norway Rats (<i>Rattus norvegicus</i>) in Romania

    Get PDF
    Hepatitis E virus (HEV) is an emerging zoonotic pathogen with different viral genera and species reported in a wide range of animals. Rodents, particularly rats, carry the specific genus rat HEV (Rocahepevirus genus, genotype C1) and are exposed occasionally to HEV-3 (Paslahepevirus genus, genotype 3), a zoonotic genotype identified in humans and widely distributed in domestic and feral pigs. In this study, the presence of HEV was investigated in synanthropic Norway rats from Eastern Romania, in areas where the presence of HEV-3 was previously reported in pigs, wild boars and humans. Using methods capable of detecting different HEV species, the presence of HEV RNA was investigated in 69 liver samples collected from 52 rats and other animal species. Nine rat liver samples were identified as being positive for rat HEV RNA (17.3%). High sequence identity (85–89% nt) was found with other European Rocahepevirus. All samples tested from other animal species, within the same environment, were negative for HEV. This is the first study to demonstrate the presence of HEV in rats from Romania. Since rat HEV has been reported to cause zoonotic infections in humans, this finding supports the need to extend the diagnosis of Rocahepevirus in humans with suspicion of hepatitis

    West Nile Virus reemergence in Romania: a serologic survey in host species

    No full text
    International audienceThe presence of West Nile virus (WNV) in humans has been known in Romania since the 1950s; the 1996 epidemics emphasized the reemergence potential of WNV in Romania. Serological surveys made on susceptible species, known as good sentinels or reservoir hosts, e.g., horses, wild and domestic birds were undertaken from 2006-2011. Our results corroborated incidence data in human patients and other recent seroprevalence studies in animals, and should partially clarify the emergence of WNV in the eastern rural territories of Romania. It also highlighted risk zones for endemic WNV infection in Romania
    corecore