628 research outputs found
Prospective evaluation of multiplicative hybrid earthquake forecasting models in California
The Regional Earthquake Likelihood Models (RELM) experiment, conducted within the Collaboratory for the Study of Earthquake Predictability (CSEP), showed that the smoothed seismicity (HKJ) model by Helmstetter et al. was the most informative time-independent earthquake model in California during the 2006–2010 evaluation period. The diversity of competing forecast hypotheses and geophysical data sets used in RELM was suitable for combining multiple models that could provide more informative earthquake forecasts than HKJ. Thus, Rhoades et al. created multiplicative hybrid models that involve the HKJ model as a baseline and one or more conjugate models. In retrospective evaluations, some hybrid models showed significant information gains over the HKJ forecast. Here, we prospectively assess the predictive skills of 16 hybrids and 6 original RELM forecasts at a 0.05 significance level, using a suite of traditional and new CSEP tests that rely on a Poisson and a binary likelihood function. In addition, we include consistency test results at a Bonferroni-adjusted significance level of 0.025 to address the problem of multiple tests. Furthermore, we compare the performance of each forecast to that of HKJ. The evaluation data set contains 40 target events recorded within the CSEP California testing region from 2011 January 1 to 2020 December 31, including the 2016 Hawthorne earthquake swarm in southwestern Nevada and the 2019 Ridgecrest sequence. Consistency test results show that most forecasting models overestimate the number of earthquakes and struggle to explain the spatial distribution of epicenters, especially in the case of seismicity clusters. The binary likelihood function significantly reduces the sensitivity of spatial log-likelihood scores to clustering, however; most models still fail to adequately describe spatial earthquake patterns. Contrary to retrospective analyses, our prospective test results show that none of the models are significantly more informative than the HKJ benchmark forecast, which we interpret to be due to temporal instabilities in the fit that forms hybrids. These results suggest that smoothing high-resolution, small earthquake data remains a robust method for forecasting moderate-to-large earthquakes over a period of 5–15 yr in California.This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 821115, Real-time earthquake rIsk reduction for a reSilient Europe (RISE), http://www.rise-eu.org). Additionally, this research was supported by the Southern California Earthquake Center (contribution no. 11011). SCEC is funded by NSF Cooperative agreement EAR-1600087 and USGS Cooperative agreement G17AC00047
Immobilization of catalase via adsorption into natural and modified active carbon obtained from walnut in various methods
In the present work, the immobilization of catalase into natural active carbon and active carbon modified by hydrochloric acid was carried out. In the experimental section, the effects of pH, ionic strength andreaction temperature were chosen as parameters, with experiments performed in batch system. For the optimization of immobilization procedure, values of kinetic parameters were evaluated. It was observedthat storage and operational stabilities of the enzyme increased with immobilization. The results obtained from experiments showed that active carbon is a valuable support for the adsorption of enzymes
The decay of quadrupole-octupole states in Ca and Ce
Background: Two-phonon excitations originating from the coupling of two
collective one-phonon states are of great interest in nuclear structure
physics. One possibility to generate low-lying excitations is the coupling
of quadrupole and octupole phonons.
Purpose: In this work, the -decay behavior of candidates for the
state in the doubly-magic nucleus Ca and in
the heavier and semi-magic nucleus Ce is investigated.
Methods: experiments have been carried out at the
High Intensity -ray Source (HIS) facility in combination with
the high-efficiency -ray spectroscopy setup consisting of
HPGe and LaBr detectors. The setup enables the acquisition of
- coincidence data and, hence, the detection of direct decay
paths.
Results: In addition to the known ground-state decays, for Ca the
decay into the state was observed, while for Ce the direct
decays into the and the state were detected. The experimentally
deduced transition strengths and excitation energies are compared to
theoretical calculations in the framework of EDF theory plus QPM approach and
systematically analyzed for isotones. In addition, negative parities for
two states in Ca were deduced simultaneously.
Conclusions: The experimental findings together with the theoretical
calculations support the two-phonon character of the excitation in the
light-to-medium-mass nucleus Ca as well as in the stable even-even
nuclei.Comment: 11 pages, 6 figures, as accepted in Phys. Rev.
Kabul Times (April 11, 1964, vol. 3, no. 37)
High-resolution photon scattering experiments have been performed on the nucleus 45Sc at the Darmstadt superconducting electron accelerator S-DALINAC using bremsstrahlung beams with end point energies of 5.0 and 7.0MeV. Energies, absolute cross-sections and decay widths of 50 states, most of them previously unknown, have been determined. The results are compared to (γ,) experiments on the neighbouring closed proton shell isotope 44Ca
Spontaneous Emergence of Persistent Spin Helix from Homogeneous Spin Polarization
We demonstrate that a homogeneous spin polarization in one-dimensional
structures of finite length in the presence of Bychkov-Rashba spin-orbit
coupling decays spontaneously toward a persistent spin helix. The analysis of
formation of spin helical state is presented within a novel approach based on a
mapping of spin drift-diffusion equations into a heat equation for a complex
field. Such a strikingly different and simple method allows generating robust
spin structures whose properties can be tuned by the strength of the spin orbit
interaction and/or structure's length. We generalize our results for
two-dimensional case predicting formation of persistent spin helix in
two-dimensional channels from homogeneous spin polarization
Fragmentation and systematics of the Pygmy Dipole Resonance in the stable N=82 isotones
The low-lying electric dipole (E1) strength in the semi-magic nucleus 136Xe
has been measured which finalizes the systematic survey to investigate the
so-called pygmy dipole resonance (PDR) in all stable even N=82 isotones with
the method of nuclear resonance fluorescence using real photons in the entrance
channel. In all cases, a fragmented resonance-like structure of E1 strength is
observed in the energy region 5 MeV to 8 MeV. An analysis of the fragmentation
of the strength reveals that the degree of fragmentation decreases towards the
proton-deficient isotones while the total integrated strength increases
indicating a dependence of the total strength on the neutron-to-proton ratio.
The experimental results are compared to microscopic calculations within the
quasi-particle phonon model (QPM). The calculation includes complex
configurations of up to three phonons and is able to reproduce also the
fragmentation of the E1 strength which allows to draw conclusions on the
damping of the PDR. Calculations and experimental data are in good agreement in
the degree of fragmentation and also in the integrated strength if the
sensitivity limit of the experiments is taken into account
Parity assignments in 172,174Yb using polarized photons and the K quantum number in rare earth nuclei
The 100 % polarized photon beam at the High Intensity gamma-ray Source (HIgS)
at Duke University has been used to determine the parity of six dipole
excitations between 2.9 and 3.6 MeV in the deformed nuclei 172,174 Yb in photon
scattering (g,g') experiments. The measured parities are compared with previous
assignments based on the K quantum number that had been assigned in Nuclear
Resonance Fluorescence (NRF) experiments by using the Alaga rules. A systematic
survey of the relation between gamma-decay branching ratios and parity quantum
numbers is given for the rare earth nuclei.Comment: 5 pages, 6 figures, to be published in Phys. Rev.
Multilinear Wavelets: A Statistical Shape Space for Human Faces
We present a statistical model for D human faces in varying expression,
which decomposes the surface of the face using a wavelet transform, and learns
many localized, decorrelated multilinear models on the resulting coefficients.
Using this model we are able to reconstruct faces from noisy and occluded D
face scans, and facial motion sequences. Accurate reconstruction of face shape
is important for applications such as tele-presence and gaming. The localized
and multi-scale nature of our model allows for recovery of fine-scale detail
while retaining robustness to severe noise and occlusion, and is
computationally efficient and scalable. We validate these properties
experimentally on challenging data in the form of static scans and motion
sequences. We show that in comparison to a global multilinear model, our model
better preserves fine detail and is computationally faster, while in comparison
to a localized PCA model, our model better handles variation in expression, is
faster, and allows us to fix identity parameters for a given subject.Comment: 10 pages, 7 figures; accepted to ECCV 201
- …